4.7: Ongeza na Ondoa Fractions na Denominators ya kawaida
- Page ID
- 173401
- Mfano wa sehemu ya kuongeza
- Ongeza sehemu ndogo na denominator ya kawaida
- Uondoaji wa sehemu ya mfano
- Ondoa sehemu ndogo na denominator ya kawaida
Kabla ya kuanza, fanya jaribio hili la utayari.
- Kurahisisha:\(2x + 9 + 3x − 4\). Ikiwa umekosa tatizo hili, kagua Mfano 2.2.10.
- Chora mfano wa sehemu\(\dfrac{3}{4}\). Ikiwa umekosa tatizo hili, tathmini Mfano 4.1.2.
- Kurahisisha:\(\dfrac{3 + 2}{6}\). Kama amekosa tatizo hili, mapitio Mfano 4.3.12.
Model Fraction Aidha
Ni robo ngapi zinaonyeshwa? Robo moja pamoja na\(2\) robo sawa na\(3\) robo.
Kielelezo\(\PageIndex{1}\)
Kumbuka, robo ni kweli FRACTIONS ya dola. Quarters ni njia nyingine ya kusema nne. Hivyo picha ya sarafu inaonyesha kwamba
\[\begin{split} \dfrac{1}{4} \qquad \qquad \qquad \dfrac{2}{4} \qquad & \qquad \qquad \dfrac{3}{4} \\ one \; quarter + two \; quarters &= three\; quarters \end{split} \nonumber \]
Hebu tumia miduara ya sehemu ili mfano mfano huo,\(\dfrac{1}{4} + \dfrac{2}{4}\).
Anza na\(\dfrac{1}{4}\) kipande kimoja. | ![]() |
\(\dfrac{1}{4}\) |
Ongeza\(\dfrac{1}{4}\) vipande viwili zaidi. | ![]() |
\(+ \dfrac{2}{4}\) |
Matokeo yake ni\(\dfrac{3}{4}\). | ![]() |
\(\dfrac{3}{4}\) |
Hivyo tena, tunaona kwamba
\[\dfrac{1}{4} + \dfrac{2}{4} = \dfrac{3}{4} \nonumber \]
Tumia mfano ili kupata jumla\(\dfrac{3}{8} + \dfrac{2}{8}\).
Suluhisho
Anza na\(\dfrac{1}{8}\) vipande vitatu. | ![]() |
\(\dfrac{3}{8}\) |
Ongeza\(\dfrac{1}{8}\) vipande viwili. | ![]() |
\(+ \dfrac{2}{8}\) |
Kuna\(\dfrac{1}{8}\) vipande ngapi? | ![]() |
\(\dfrac{5}{8}\) |
Kuna\(\dfrac{1}{8}\) vipande tano, au tano na nane. Mfano unaonyesha kwamba\(\dfrac{3}{8} + \dfrac{2}{8} = \dfrac{5}{8}\).
Tumia mfano ili kupata kila jumla. Onyesha mchoro ili kuonyesha mfano wako. \[\dfrac{1}{8} + \dfrac{4}{8} \nonumber \]
- Jibu
-
\(\dfrac{5}{8}\)
Tumia mfano ili kupata kila jumla. Onyesha mchoro ili kuonyesha mfano wako. \[\dfrac{1}{6} + \dfrac{4}{6} \nonumber \]
- Jibu
-
\(\dfrac{5}{6}\)
Ongeza sehemu ndogo na Denominator ya kawaida
Mfano\(\PageIndex{1}\) unaonyesha kwamba kuongeza vipande sawa-size maana kwamba sehemu ndogo na denominator sawa-sisi tu kuongeza idadi ya vipande.
Ikiwa\(a\),\(b\), na\(c\) ni namba ambapo\(c ≠ 0\), basi
\[\dfrac{a}{c} + \dfrac{b}{c} = \dfrac{a + b}{c}\]
Ili kuongeza sehemu ndogo na denominator ya kawaida, ongeza nambari na uweke jumla juu ya denominator ya kawaida.
Pata jumla:\(\dfrac{3}{5} + \dfrac{1}{5}\).
Suluhisho
Ongeza nambari na uweke jumla juu ya denominator ya kawaida. | \(\dfrac{3 + 1}{5}\) |
Kurahisisha. | \(\dfrac{4}{5}\) |
Kupata kila jumla:\(\dfrac{3}{6} + \dfrac{2}{6}\).
- Jibu
-
\(\dfrac{5}{6}\)
Kupata kila jumla:\(\dfrac{3}{10} + \dfrac{7}{10}\).
- Jibu
-
\(1\)
Pata jumla:\(\dfrac{x}{3} + \dfrac{2}{3}\).
Suluhisho
Ongeza nambari na uweke jumla juu ya denominator ya kawaida. | \(\dfrac{x + 2}{3}\) |
Kumbuka kwamba hatuwezi kurahisisha sehemu hii tena. Kwa kuwa\(x\) na\(2\) si kama maneno, hatuwezi kuchanganya nao.
Pata jumla:\(\dfrac{x}{4} + \dfrac{3}{4}\).
- Jibu
-
\(\dfrac{x+3}{4}\)
Pata jumla:\(\dfrac{y}{8} + \dfrac{5}{8}\).
- Jibu
-
\(\dfrac{y+5}{8}\)
Pata jumla:\(− \dfrac{9}{d} + \dfrac{3}{d}\).
Suluhisho
Tutaanza kwa kuandika tena sehemu ya kwanza na ishara hasi katika nambari.
\[− \dfrac{a}{b} = \dfrac{−a}{b} \nonumber \]
Andika upya sehemu ya kwanza na hasi katika nambari. | \(\dfrac{-9}{d} + \dfrac{3}{d}\) |
Ongeza nambari na uweke jumla juu ya denominator ya kawaida. | \(\dfrac{-9 + 3}{d}\) |
Kurahisisha nambari. | \(\dfrac{-6}{d}\) |
Andika upya na ishara hasi mbele ya sehemu. | \(- \dfrac{6}{d}\) |
Pata jumla:\(− \dfrac{7}{d} + \dfrac{8}{d}\).
- Jibu
-
\(\dfrac{1}{d}\)
Pata jumla:\(− \dfrac{6}{m} + \dfrac{9}{m}\).
- Jibu
-
\(\dfrac{3}{m}\)
Pata jumla:\(\dfrac{2n}{11} + \dfrac{5n}{11}\).
Suluhisho
Ongeza nambari na uweke jumla juu ya denominator ya kawaida. | \(\dfrac{2n + 5n}{11}\) |
Kuchanganya kama maneno. | \(\dfrac{7n}{11}\) |
Pata jumla:\(\dfrac{3p}{8} + \dfrac{6p}{8}\).
- Jibu
-
\(\dfrac{9p}{8}\)
Pata jumla:\(\dfrac{2q}{5} + \dfrac{7q}{5}\).
- Jibu
-
\(\dfrac{9q}{5}\)
Pata jumla:\(− \dfrac{3}{12} + \left(− \dfrac{5}{12}\right)\).
Suluhisho
Ongeza nambari na uweke jumla juu ya denominator ya kawaida. | \(\dfrac{-3 + (-5)}{12}\) |
Ongeza. | \(\dfrac{-8}{12}\) |
Kurahisisha sehemu. | \(-\dfrac{2}{3}\) |
Kupata kila jumla:\(− \dfrac{4}{15} + \left(− \dfrac{6}{15}\right)\).
- Jibu
-
\(-\dfrac{2}{3}\)
Kupata kila jumla:\(− \dfrac{5}{21} + \left(− \dfrac{9}{21}\right)\).
- Jibu
-
\(-\dfrac{2}{3}\)
Model sehemu Ondoa
Kuondoa sehemu mbili na denominators ya kawaida ni kama kuongeza sehemu ndogo. Fikiria pizza iliyokatwa katika\(12\) vipande. Tuseme vipande tano huliwa kwa chakula cha jioni. Hii ina maana kwamba, baada ya chakula cha jioni, kuna vipande saba (au\(\dfrac{7}{12}\) vya pizza) vilivyoachwa katika sanduku. Ikiwa Leonardo anakula\(2\) vipande hivi vilivyobaki (au\(\dfrac{2}{12}\) pizza), ni kiasi gani kinachoachwa? Kutakuwa na\(5\) vipande vilivyoachwa (au\(\dfrac{5}{12}\) vya pizza).
\[\dfrac{7}{12} - \dfrac{2}{12} = \dfrac{5}{12} \nonumber \]
Hebu tumia miduara ya sehemu ili mfano mfano huo,\(\dfrac{7}{12} − \dfrac{2}{12}\). Anza na\(\dfrac{1}{12}\) vipande saba. Chukua\(\dfrac{1}{12}\) vipande viwili. Ni ngapi kumi na mbili wanaachwa?
Kielelezo\(\PageIndex{2}\)
Tena, tuna kumi na mbili tano,\(\dfrac{5}{12}\).
Tumia miduara ya sehemu ili kupata tofauti:\(\dfrac{4}{5} − \dfrac{1}{5}\).
Suluhisho
Anza na\(\dfrac{1}{5}\) vipande vinne. Chukua\(\dfrac{1}{5}\) kipande kimoja. Hesabu ngapi tano zimeachwa. Kuna\(\dfrac{1}{5}\) vipande vitatu vilivyoachwa.
Tumia mfano ili kupata kila tofauti. Onyesha mchoro ili kuonyesha mfano wako. \(\dfrac{7}{8} − \dfrac{4}{8}\)
- Jibu
-
\(\dfrac{3}{8}\), mifano inaweza kutofautiana.
Tumia mfano ili kupata kila tofauti. Onyesha mchoro ili kuonyesha mfano wako. \(\dfrac{5}{6} − \dfrac{4}{6}\)
- Jibu
-
\(\dfrac{1}{6}\), mifano inaweza kutofautiana.
Ondoa FRACTIONS na Denominator ya kawaida
Tunaondoa sehemu ndogo na denominator ya kawaida kwa njia sawa na sisi kuongeza sehemu ndogo na denominator ya kawaida.
Ikiwa\(a\),\(b\), na\(c\) ni namba ambapo\(c ≠ 0\), basi
\[\dfrac{a}{c} - \dfrac{b}{c} = \dfrac{a-b}{c}\]
Ili kuondoa sehemu ndogo na denominator ya kawaida, tunaondoa nambari na kuweka tofauti juu ya denominator ya kawaida.
Kupata tofauti:\(\dfrac{23}{24} − \dfrac{14}{24}\).
Suluhisho
Ondoa nambari na uweke tofauti juu ya denominator ya kawaida. | \(\dfrac{23 - 14}{24}\) |
Kurahisisha nambari. | \(\dfrac{9}{24}\) |
Kurahisisha sehemu kwa kuondoa mambo ya kawaida. | \(\dfrac{3}{8}\) |
Kupata tofauti:\(\dfrac{19}{28} − \dfrac{7}{28}\).
- Jibu
-
\(\dfrac{3}{7}\)
Kupata tofauti:\(\dfrac{27}{32} − \dfrac{11}{32}\).
- Jibu
-
\(\dfrac{1}{2}\)
Kupata tofauti:\(\dfrac{y}{6} − \dfrac{1}{6}\).
Suluhisho
Ondoa nambari na uweke tofauti juu ya denominator ya kawaida. | \(\dfrac{y - 1}{6}\) |
Sehemu ni rahisi kwa sababu hatuwezi kuchanganya maneno katika nambari.
Kupata tofauti:\(\dfrac{x}{7} − \dfrac{2}{7}\).
- Jibu
-
\(\dfrac{x-2}{7}\)
Kupata tofauti:\(\dfrac{y}{14} − \dfrac{13}{14}\).
- Jibu
-
\(\dfrac{y-13}{14}\)
Kupata tofauti:\(− \dfrac{10}{x} − \dfrac{4}{x}\).
Suluhisho
Kumbuka, sehemu\(− \dfrac{10}{x}\) inaweza kuandikwa kama\(\dfrac{−10}{x}\).
Ondoa nambari. | \(\dfrac{-10 - 4}{x}\) |
Kurahisisha. | \(\dfrac{-14}{x}\) |
Andika upya na ishara hasi mbele ya sehemu. | \(- \dfrac{14}{x}\) |
Kupata tofauti:\(− \dfrac{9}{x} − \dfrac{7}{x}\).
- Jibu
-
\(-\dfrac{16}{x}\)
Kupata tofauti:\(− \dfrac{17}{a} − \dfrac{5}{a}\).
- Jibu
-
\(-\dfrac{22}{a}\)
Sasa hebu tufanye mfano unaohusisha wote kuongeza na kuondoa.
Kurahisisha:\(\dfrac{3}{8} + \left(- \dfrac{5}{8}\right) − \dfrac{1}{8}\).
Suluhisho
Kuchanganya nambari juu ya denominator ya kawaida. | \(\dfrac{3 + (-5) - 1}{8}\) |
Kurahisisha namba, kufanya kazi kushoto kwenda kulia. | \(\dfrac{-2 - 1}{8}\) |
Ondoa maneno katika namba. | \(\dfrac{-3}{8}\) |
Andika upya na ishara hasi mbele ya sehemu. | \(- \dfrac{3}{8}\) |
Kurahisisha:\(\dfrac{2}{5} + \left(− \dfrac{4}{5}\right) − \dfrac{3}{5}\).
- Jibu
-
\(-1\)
Kurahisisha:\(\dfrac{5}{9} + \left(− \dfrac{4}{9}\right) − \dfrac{7}{9}\).
- Jibu
-
\(-\dfrac{2}{3}\)
Fikia Rasilimali za Ziada
Dhana muhimu
- Sehemu ya kuongeza
- Kama\(a,b,\)na\(c\) ni idadi ambapo\(c\neq 0\), basi\(\dfrac{a}{c} + \dfrac{b}{c} = \dfrac{a+b}{c}\)
- Ili kuongeza sehemu ndogo, ongeza nambari na uweke jumla juu ya denominator ya kawaida.
- Kuondoa sehemu
- Kama\(a,b,\)na\(c\) ni idadi ambapo\(c\neq 0\), basi\(\dfrac{a}{c} - \dfrac{b}{c} = \dfrac{a-b}{c}\)
- Ili kuondoa sehemu ndogo, toa nambari na uweke tofauti juu ya denominator ya kawaida.
Mazoezi hufanya kamili
Model sehemu Aidha
Katika mazoezi yafuatayo, tumia mfano ili kuongeza sehemu ndogo. Onyesha mchoro ili kuonyesha mfano wako.
- \(\dfrac{2}{5} + \dfrac{1}{5}\)
- \(\dfrac{3}{10} + \dfrac{4}{10}\)
- \(\dfrac{1}{6} + \dfrac{3}{6}\)
- \(\dfrac{3}{8} + \dfrac{3}{8}\)
Ongeza sehemu ndogo na Denominator ya kawaida
Katika mazoezi yafuatayo, tafuta kila jumla.
- \(\dfrac{4}{9} + \dfrac{1}{9}\)
- \(\dfrac{2}{9} + \dfrac{5}{9}\)
- \(\dfrac{6}{13} + \dfrac{7}{13}\)
- \(\dfrac{9}{15} + \dfrac{7}{15}\)
- \(\dfrac{x}{4} + \dfrac{3}{4}\)
- \(\dfrac{y}{3} + \dfrac{2}{3}\)
- \(\dfrac{7}{p} + \dfrac{9}{p}\)
- \(\dfrac{8}{q} + \dfrac{6}{q}\)
- \(\dfrac{8b}{9} + \dfrac{3b}{9}\)
- \(\dfrac{5a}{7} + \dfrac{4a}{7}\)
- \(\dfrac{-12y}{8} + \dfrac{3y}{8}\)
- \(\dfrac{-11x}{5} + \dfrac{7x}{5}\)
- \(− \dfrac{1}{8} + \left(− \dfrac{3}{8}\right)\)
- \(− \dfrac{1}{8} + \left(− \dfrac{5}{8}\right)\)
- \(− \dfrac{3}{16} + \left(− \dfrac{7}{16}\right)\)
- \(− \dfrac{5}{16} + \left(− \dfrac{9}{16}\right)\)
- \(− \dfrac{8}{17} + \dfrac{15}{17}\)
- \(− \dfrac{9}{19} + \dfrac{17}{19}\)
- \(− \dfrac{6}{13} + \left(− \dfrac{10}{13}\right) + \left(- \dfrac{12}{13}\right)\)
- \(− \dfrac{5}{12} + \left(− \dfrac{7}{12}\right) + \left(- \dfrac{11}{12}\right)\)
Model sehemu Ondoa
Katika mazoezi yafuatayo, tumia mfano wa kuondoa sehemu ndogo. Onyesha mchoro ili kuonyesha mfano wako.
- \(\dfrac{5}{8} − \dfrac{2}{8}\)
- \(\dfrac{5}{6} − \dfrac{2}{6}\)
Ondoa FRACTIONS na Denominator ya kawaida
Katika mazoezi yafuatayo, tafuta tofauti.
- \(\dfrac{4}{5} − \dfrac{1}{5}\)
- \(\dfrac{4}{5} − \dfrac{3}{5}\)
- \(\dfrac{11}{15} − \dfrac{7}{15}\)
- \(\dfrac{9}{13} − \dfrac{4}{13}\)
- \(\dfrac{11}{12} − \dfrac{5}{12}\)
- \(\dfrac{7}{12} − \dfrac{5}{12}\)
- \(\dfrac{4}{21} − \dfrac{19}{21}\)
- \(- \dfrac{8}{9} − \dfrac{16}{9}\)
- \(\dfrac{y}{17} − \dfrac{9}{17}\)
- \(\dfrac{x}{19} − \dfrac{8}{19}\)
- \(\dfrac{5y}{8} − \dfrac{7}{8}\)
- \(\dfrac{11z}{13} − \dfrac{8}{13}\)
- \(- \dfrac{8}{d} − \dfrac{3}{d}\)
- \(- \dfrac{7}{c} − \dfrac{7}{c}\)
- \(- \dfrac{23}{u} − \dfrac{15}{u}\)
- \(- \dfrac{29}{v} − \dfrac{26}{v}\)
- \(- \dfrac{6c}{7} − \dfrac{5c}{7}\)
- \(- \dfrac{12d}{11} − \dfrac{9d}{11}\)
- \(\dfrac{-4r}{13} − \dfrac{5r}{13}\)
- \(\dfrac{-7s}{3} − \dfrac{7s}{3}\)
- \(- \dfrac{3}{5} − \left(- \dfrac{4}{5}\right)\)
- \(- \dfrac{3}{7} − \left(- \dfrac{5}{7}\right)\)
- \(- \dfrac{7}{9} − \left(- \dfrac{5}{9}\right)\)
- \(- \dfrac{8}{11} − \left(- \dfrac{5}{11}\right)\)
Mazoezi ya mchanganyiko
Katika mazoezi yafuatayo, fanya operesheni iliyoonyeshwa na uandike majibu yako kwa fomu rahisi.
- \(− \dfrac{5}{18} \cdot \dfrac{9}{10}\)
- \(− \dfrac{3}{14} \cdot \dfrac{7}{12}\)
- \(\dfrac{n}{5} − \dfrac{4}{5}\)
- \(\dfrac{6}{11} − \dfrac{s}{11}\)
- \(- \dfrac{7}{24} − \dfrac{2}{24}\)
- \(- \dfrac{5}{18} − \dfrac{1}{18}\)
- \(\dfrac{8}{15} \div \dfrac{12}{5}\)
- \(\dfrac{7}{12} \div \dfrac{9}{28}\)
kila siku Math
- Trail Mix Jacob ni kuchanganya pamoja karanga na zabibu kufanya uchaguzi mchanganyiko. Ana chupa\(\dfrac{6}{10}\) ya karanga na\(\dfrac{3}{10}\) ya chupa ya zabibu. Kiasi gani cha uchaguzi anaweza kufanya?
- Baking Janet mahitaji\(\dfrac{5}{8}\) ya kikombe cha unga kwa mapishi yeye ni kufanya. Ana kikombe\(\dfrac{3}{8}\) cha unga tu na ataomba kukopa wengine kutoka kwa jirani yake ya karibu. Ni kiasi gani cha unga anapaswa kukopa?
Mazoezi ya kuandika
- Greg imeshuka kesi yake ya bits drill na tatu ya bits akaanguka nje. Kesi hiyo ina mipaka ya bits za kuchimba, na mipaka hupangwa ili kutoka ndogo hadi kubwa. Greg mahitaji ya kuweka bits kwamba akaanguka nyuma katika kesi katika inafaa tupu. Je, bits tatu huenda wapi? Eleza jinsi unavyojua.
Bits katika kesi:\(\dfrac{1}{16}, \dfrac{1}{8}\), ___, ___\(\dfrac{5}{16}, \dfrac{3}{8}\), ___,\(\dfrac{1}{2}, \dfrac{9}{16}, \dfrac{5}{8}\).
Bits kwamba akaanguka nje:\(\dfrac{7}{16}, \dfrac{3}{16}, \dfrac{1}{4}\).
- Baada ya chama, Lupe ina\(\dfrac{5}{12}\) ya jibini pizza,\(\dfrac{4}{12}\) ya pepperoni pizza, na\(\dfrac{4}{12}\) ya veggie pizza kushoto. Je! Vipande vyote vinafaa katika sanduku la pizza 1? Eleza hoja zako.
Self Check
(a) Baada ya kukamilisha mazoezi, tumia orodha hii ili kutathmini ujuzi wako wa malengo ya sehemu hii.
(b) Kwa kiwango cha 1—10, ungewezaje kupima ujuzi wako wa sehemu hii kwa kuzingatia majibu yako kwenye orodha? Unawezaje kuboresha hii?