Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 
Global

9.2: Punguza Mizizi ya Mraba

Malengo ya kujifunza

Mwishoni mwa sehemu hii, utaweza:

  • Tumia Mali ya Bidhaa ili kurahisisha mizizi ya mraba
  • Tumia Mali ya Quotient ili kurahisisha mizizi ya mraba
KUWA TAYARI

Kabla ya kupata kuanza kuchukua jaribio hili utayari.

  1. Kurahisisha:80176.
    Ikiwa umekosa tatizo hili, tathmini [kiungo].
  2. Kurahisisha:n9n3.
    Ikiwa umekosa tatizo hili, tathmini [kiungo].
  3. Kurahisisha:q4q12.
    Ikiwa umekosa tatizo hili, tathmini [kiungo].

Katika sehemu ya mwisho, sisi inakadiriwa mizizi mraba ya idadi kati ya namba mbili mfululizo mzima. Tunaweza kusema kwamba50 ni kati ya 7 na 8. Hii ni haki rahisi kufanya wakati idadi ni ndogo ya kutosha kwamba tunaweza kutumia [kiungo].

Lakini vipi ikiwa tunataka kukadiria500? Kama sisi kurahisisha mizizi mraba kwanza, tutaweza kukadiria kwa urahisi. Kuna sababu nyingine, pia, ili kurahisisha mizizi ya mraba kama utaona baadaye katika sura hii.

Mzizi wa mraba unachukuliwa kuwa rahisi ikiwa radicana yake haina sababu kamili za mraba.

Ufafanuzi: SQUARE ROOT RAHISI

ainachukuliwa kilichorahisishwa kama hana sababu kamili za mraba.

Hivyo31 ni rahisi. Lakini32 si rahisi, kwa sababu 16 ni sababu kamili ya mraba ya 32.

Tumia mali ya Bidhaa ili kurahisisha Mizizi ya Mraba

Mali ambayo tutatumia ili kurahisisha maneno na mizizi ya mraba ni sawa na mali ya wasimamizi. Tunajua kwamba(ab)m=ambm. Mali sambamba ya mizizi ya mraba inasema hivyoab=a·b.

Ufafanuzi: PRODUCT PROPERTY YA MIZIZI

Ikiwa a, b ni namba zisizo hasi halisi, basiab=a·b.

Tunatumia Bidhaa Mali ya Mizizi ya Mraba ili kuondoa mambo yote ya mraba kamili kutoka kwa radical. Tutaonyesha jinsi ya kufanya hivyo katika Mfano.

Jinsi ya Kutumia Mali ya Bidhaa ili kurahisisha Mizizi ya Mraba

Mfano9.2.1

Kurahisisha:50.

Jibu

Takwimu hii ina nguzo tatu na safu tatu. Mstari wa kwanza unasema, “Hatua ya 1. Pata sababu kubwa zaidi ya mraba ya radicand. Andika upya radicand kama bidhaa kwa kutumia sababu kamili ya mraba.” Kisha anasema, “25 ni kubwa kamili mraba sababu ya 50. 50 sawa 25 mara 2. Daima kuandika sababu kamili ya mraba kwanza.” Kisha inaonyesha mizizi ya mraba ya 50 na mizizi ya mraba ya mara 25 2.Mstari wa pili unasema, “Hatua ya 2. Tumia utawala wa bidhaa ili uandike upya radical kama bidhaa ya radicals mbili.” Safu ya pili ni tupu, lakini safu ya tatu inaonyesha mizizi ya mraba ya mara 25 mizizi ya mraba ya 2.Mstari wa tatu unasema, “Hatua ya 3. Kurahisisha mizizi mraba wa mraba kamilifu.” Safu ya pili ni tupu, lakini safu ya tatu inaonyesha mara 5 mizizi ya mraba ya 2.

Mfano9.2.2

Kurahisisha:48.

Jibu

43

Mfano9.2.3

Kurahisisha:45.

Jibu

35

Taarifa katika mfano uliopita kuwa fomu rahisi ya50 is 52, which is the product of an integer and a square root. We always write the integer in front of the square root.

ufafanuzi: KURAHISISHA MIZIZI SQUARE KUTUMIA PRODUCT PROPERTY
  1. Pata sababu kubwa zaidi ya mraba ya radicand. Andika upya radicna kama bidhaa kwa kutumia sababu kamilifu ya mraba.
  2. Tumia utawala wa bidhaa ili uandike upya radical kama bidhaa ya radicals mbili.
  3. Kurahisisha mizizi ya mraba wa mraba kamilifu.
Mfano9.2.4

Kurahisisha:500.

Jibu

500Rewrite the radicand as a product using the largest perfect square factor100·5Rewrite the radical as the product of two radicals100·5Simplify105

Mfano9.2.5

Kurahisisha:288.

Jibu

122

Mfano9.2.6

Kurahisisha:432.

Jibu

123

Tunaweza kutumia fomu kilichorahisishwa105 ili kukadiria500. Tunajua5 ni kati ya 2 na 3, na500 ni105. Hivyo500 ni kati ya 20 na 30.

Mfano unaofuata ni sawa na mifano ya awali, lakini kwa vigezo.

Mfano9.2.7

Kurahisisha:x3.

Jibu

x3Rewrite the radicand as a product using the largest perfect square factorx2·xRewrite the radical as the product of two radicalsx2·xSimplifyxx

Mfano9.2.8

Kurahisisha:b5.

Jibu

b2b

Mfano9.2.9

Kurahisisha:p9.

Jibu

p4p

Tunafuata utaratibu huo wakati kuna mgawo katika radical, pia.

Mfano9.2.10

Kurahisisha:25y5.

Jibu

25y5Rewrite the radicand as a product using the largest perfect square factor.25y4·yRewrite the radical as the product of two radicals.25y4·ySimplify.5y2y

Mfano9.2.11

Kurahisisha:16x7.

Jibu

4x3x

Mfano9.2.12

Kurahisisha:49v9.

Jibu

7v4v

Katika mfano unaofuata wote mara kwa mara na kutofautiana wana mambo kamili ya mraba.

Mfano9.2.13

Kurahisisha:72n7.

Jibu

72n7Rewrite the radicand as a product using the largest perfect square factor.36n6·2nRewrite the radical as the product of two radicals.36n6·2nSimplify.6n32n

Mfano9.2.14

Kurahisisha:32y5.

Jibu

4y22y

Mfano9.2.15

Kurahisisha:75a9.

Jibu

5a43a

Mfano9.2.16

Kurahisisha:63u3v5.

Jibu

63u3v5Rewrite the radicand as a product using the largest perfect square factor.9u2v4·7uvRewrite the radical as the product of two radicals.9u2v4·7uvSimplify.3uv27uv

Mfano9.2.17

Kurahisisha:98a7b5.

Jibu

7a3b22ab

Mfano9.2.18

Kurahisisha:180m9n11.

Jibu

6m4n55mn

Tumeona jinsi ya kutumia Order of Operations kurahisisha baadhi ya maneno na radicals. Ili kurahisisha25+144 we must simplify each square root separately first, then add to get the sum of 17.

Maneno17+7 hayawezi kurahisishwa-kuanza tunatarajia kurahisisha kila mizizi ya mraba, lakini wala 17 wala 7 ina sababu kamili ya mraba.

Katika mfano unaofuata, tuna jumla ya integer na mizizi ya mraba. Sisi kurahisisha mizizi mraba lakini hawezi kuongeza kujieleza kusababisha kwa integer.

Mfano9.2.19

Kurahisisha:3+32.

Jibu

3+32Rewrite the radicand as a product using the largest perfect square factor.3+16·2Rewrite the radical as the product of two radicals.3+16·2Simplify.3+42

Masharti hayapatikani na hivyo hatuwezi kuziongezea. Kujaribu kuongeza integer na radical ni kama kujaribu kuongeza integer na variable-wao si kama maneno!

Mfano9.2.20

Kurahisisha:5+75.

Jibu

5+53

Mfano9.2.21

Kurahisisha:2+98.

Jibu

2+72

Mfano unaofuata unajumuisha sehemu yenye radical katika nambari. Kumbuka kwamba ili kurahisisha sehemu unahitaji jambo la kawaida katika nambari na denominator.

Mfano9.2.22

Kurahisisha:4482.

Jibu

4482Rewrite the radicand as a product using thelargest perfect square factor.416·32Rewrite the radical as the product of two radicals.416·32Simplify.4432Factor the common factor from thenumerator.4(13)2Remove the common factor, 2, from thenumerator and denominator.2(13)

Mfano9.2.23

Kurahisisha:10755.

Jibu

23

Mfano9.2.24

Kurahisisha:6453.

Jibu

25

Tumia mali ya Quotient ili kurahisisha Mizizi ya Mraba

Wakati wowote unapaswa kurahisisha mizizi ya mraba, hatua ya kwanza unapaswa kuchukua ni kuamua kama radicand ni mraba kamilifu. Sehemu kamili ya mraba ni sehemu ambayo namba zote na denominator ni mraba kamilifu.

Mfano9.2.25

Kurahisisha:964.

Jibu

964Since(38)238

Mfano9.2.26

Kurahisisha:2516.

Jibu

54

Mfano9.2.27

Kurahisisha:4981.

Jibu

79

Ikiwa nambari na denominator zina mambo yoyote ya kawaida, uwaondoe. Unaweza kupata sehemu kamili ya mraba!

Mfano9.2.28

Kurahisisha:4580.

Jibu

4580Simplify inside the radical first. Rewrite showing the common factors of the numerator and denominator.5·95·16Simplify the fraction by removing common factors.916Simplify.(34)2=91634

Mfano9.2.29

Kurahisisha:7548.

Jibu

54

Mfano9.2.30

Kurahisisha:98162.

Jibu

79

Katika mfano wa mwisho, hatua yetu ya kwanza ilikuwa kurahisisha sehemu chini ya radical kwa kuondoa mambo ya kawaida. Katika mfano unaofuata tutatumia Mali ya Quotient ili kurahisisha chini ya radical. Sisi kugawanya besi kama kwa kutoa exponents yao,aman=amn,a0.

Mfano9.2.31

Kurahisisha:m6m4.

Jibu

m6m4Simplify the fraction inside the radical firstm2Divide the like bases by subtracting the exponents.Simplify.m

Mfano9.2.32

Kurahisisha:a8a6.

Jibu

a

Mfano9.2.33

Kurahisisha:x14x10.

Jibu

x2

Mfano9.2.34

Kurahisisha:48p73p3.

Jibu

48p73p3Simplify the fraction inside the radical first.16p4Simplify.4p2

Mfano9.2.35

Kurahisisha:75x53x.

Jibu

5x2

Mfano9.2.36

Kurahisisha:72z122z10.

Jibu

6z

Kumbuka Quotient kwa Mali Nguvu? Ni alisema tunaweza kuongeza sehemu ya nguvu kwa kuongeza nambari na denominator kwa nguvu tofauti.

(ab)m=ambm,b0

Tunaweza kutumia mali sawa ili kurahisisha mizizi ya mraba ya sehemu. Baada ya kuondoa mambo yote ya kawaida kutoka kwa nambari na denominator, ikiwa sehemu sio mraba kamili, tunapunguza namba na denominator tofauti.

Ufafanuzi: QUOTIENT PROPERTY YA SQUARE ROOTS

Ikiwa, b ni namba zisizo hasi halisi nab0, basi

ab=ab

Mfano9.2.37

Kurahisisha:2164.

Jibu

2164We cannot simplify the fraction inside the radical. Rewrite using the quotient property.2164Simplify the square root of 64. The numerator cannot be simplified.218

Mfano9.2.38

Kurahisisha:1949.

Jibu

197

Mfano9.2.39

Kurahisisha:2881

Jibu

279

Jinsi ya kutumia Mali ya Quotient ili kurahisisha Mizizi ya Mraba

Mfano9.2.40

Kurahisisha:27m3196.

Jibu

Jedwali hili lina nguzo tatu na safu tatu. Mstari wa kwanza unasoma, “Hatua ya 1. Kurahisisha sehemu katika radicand, kama inawezekana.” Kisha inaonyesha kwamba 27 m cubed juu ya 196 haiwezi kuwa rahisi. Kisha inaonyesha mizizi ya mraba ya 27 m cubed juu ya 196.Mstari wa pili unasema, “Hatua ya 2. Matumizi Mali Quotient kuandika upya radical kama quotient ya itikadi kali mbili.” Kisha inasema, “Tunaandika upya mzizi wa mraba wa 27 m cubed juu ya 196 kama quotient ya mizizi ya mraba ya 27 m cubed na mizizi ya mraba ya 196.” Kisha inaonyesha mizizi ya mraba ya 27 m cubed juu ya mizizi ya mraba ya 196.Mstari wa tatu unasema, “Hatua ya 3. Kurahisisha radicals katika nambari na denominator.” Kisha inasema, “9 m mraba na 196 ni mraba kamilifu.” Kisha inaonyesha mizizi ya mraba ya 9 m wakati wa mraba, mizizi ya mraba ya m 3 juu ya mizizi ya mraba ya 196. Halafu inaonyesha mara 3 m mizizi ya mraba ya m 3 juu ya 14.

Mfano9.2.41

Kurahisisha:24p349

Jibu

2p6p7

Mfano9.2.42

Kurahisisha:48x5100

Jibu

2x23x5

ufafanuzi: KURAHISISHA MIZIZI SQUARE KUTUMIA QUOTIENT PROPERTY.
  1. Kurahisisha sehemu katika radicand, ikiwa inawezekana.
  2. Matumizi ya Mali Quotient kuandika upya radical kama quotient ya radicals mbili.
  3. Kurahisisha radicals katika nambari na denominator.
Mfano9.2.43

Kurahisisha:45x5y4.

Jibu

45x5y4We cannot simplify the fraction inside the radical. Rewrite using the quotient property.45x5y4Simplify the radicals in the numerator and the denominator.9x45xy2Simplify.3x25xy2

Mfano9.2.44

Kurahisisha:80m3n6

Jibu

4m5mn3

Mfano9.2.45

Kurahisisha:54u7v8.

Jibu

3u36uv4

Hakikisha kurahisisha sehemu katika radicna kwanza, ikiwa inawezekana.

Mfano9.2.46

Kurahisisha:81d925d4.

Jibu

81d925d4Simplify the fraction in the radicand.81d525Rewrite using the quotient property.81d525Simplify the radicals in the numerator and the denominator.81d4d5Simplify.9d2d5

Mfano9.2.47

Kurahisisha:64x79x3.

Jibu

8x23

Mfano9.2.48

Kurahisisha:16a9100a5.

Jibu

2a25

Mfano9.2.49

Kurahisisha:18p5q732pq2.

Jibu

18p5q732pq2Simplify the fraction in the radicand.9p4q516Rewrite using the quotient property.9p4q516Simplify the radicals in the numerator and the denominator.9p4q4q4Simplify.3p2q2q4

Mfano9.2.50

Kurahisisha:50x5y372x4y.

Jibu

5yx6

Mfano9.2.51

Kurahisisha:48m7n2125m5n9.

Jibu

4m35n35n

Dhana muhimu

  • Kilichorahisishwa Square Roota inachukuliwa kilichorahisishwa kama hana sababu kamilifu za mraba.
  • Bidhaa Mali ya Mizizi Square Kama, b ni zisizo hasi idadi halisi, basi

    ab=a·b

  • Kurahisisha Mizizi ya Mraba Kutumia Mali ya Bidhaa Ili kurahisisha mizizi ya mraba kwa kutumia Mali ya Bidhaa:
    1. Pata sababu kubwa zaidi ya mraba ya radicand. Andika upya radicna kama bidhaa kwa kutumia sababu kamili ya mraba.
    2. Tumia utawala wa bidhaa ili uandike upya radical kama bidhaa ya radicals mbili.
    3. Kurahisisha mizizi ya mraba wa mraba kamilifu.
  • Mali ya Quotient ya Mizizi ya Mraba Kama, b ni namba zisizo hasi halisi nab0, basi

    ab=ab

  • Kurahisisha Mizizi ya Mraba Kutumia Mali ya Quotient Ili kurahisisha mizizi ya mraba kwa kutumia Mali ya Quotient:
    1. Kurahisisha sehemu katika radicand, ikiwa inawezekana.
    2. Tumia Utawala wa Quotient kuandika upya radical kama quotient ya radicals mbili.
    3. Kurahisisha radicals katika nambari na denominator.