9.2: Punguza Mizizi ya Mraba
Mwishoni mwa sehemu hii, utaweza:
- Tumia Mali ya Bidhaa ili kurahisisha mizizi ya mraba
- Tumia Mali ya Quotient ili kurahisisha mizizi ya mraba
Katika sehemu ya mwisho, sisi inakadiriwa mizizi mraba ya idadi kati ya namba mbili mfululizo mzima. Tunaweza kusema kwamba√50 ni kati ya 7 na 8. Hii ni haki rahisi kufanya wakati idadi ni ndogo ya kutosha kwamba tunaweza kutumia [kiungo].
Lakini vipi ikiwa tunataka kukadiria√500? Kama sisi kurahisisha mizizi mraba kwanza, tutaweza kukadiria kwa urahisi. Kuna sababu nyingine, pia, ili kurahisisha mizizi ya mraba kama utaona baadaye katika sura hii.
Mzizi wa mraba unachukuliwa kuwa rahisi ikiwa radicana yake haina sababu kamili za mraba.
√ainachukuliwa kilichorahisishwa kama hana sababu kamili za mraba.
Hivyo√31 ni rahisi. Lakini√32 si rahisi, kwa sababu 16 ni sababu kamili ya mraba ya 32.
Tumia mali ya Bidhaa ili kurahisisha Mizizi ya Mraba
Mali ambayo tutatumia ili kurahisisha maneno na mizizi ya mraba ni sawa na mali ya wasimamizi. Tunajua kwamba(ab)m=ambm. Mali sambamba ya mizizi ya mraba inasema hivyo√ab=√a·√b.
Ikiwa a, b ni namba zisizo hasi halisi, basi√ab=√a·√b.
Tunatumia Bidhaa Mali ya Mizizi ya Mraba ili kuondoa mambo yote ya mraba kamili kutoka kwa radical. Tutaonyesha jinsi ya kufanya hivyo katika Mfano.
Jinsi ya Kutumia Mali ya Bidhaa ili kurahisisha Mizizi ya Mraba
Kurahisisha:√50.
- Jibu
-
Kurahisisha:√48.
- Jibu
-
4√3
Kurahisisha:√45.
- Jibu
-
3√5
Taarifa katika mfano uliopita kuwa fomu rahisi ya√50 is 5√2, which is the product of an integer and a square root. We always write the integer in front of the square root.
- Pata sababu kubwa zaidi ya mraba ya radicand. Andika upya radicna kama bidhaa kwa kutumia sababu kamilifu ya mraba.
- Tumia utawala wa bidhaa ili uandike upya radical kama bidhaa ya radicals mbili.
- Kurahisisha mizizi ya mraba wa mraba kamilifu.
Kurahisisha:√500.
- Jibu
-
√500Rewrite the radicand as a product using the largest perfect square factor√100·5Rewrite the radical as the product of two radicals√100·√5Simplify10√5
Kurahisisha:√288.
- Jibu
-
12√2
Kurahisisha:√432.
- Jibu
-
12√3
Tunaweza kutumia fomu kilichorahisishwa10√5 ili kukadiria√500. Tunajua√5 ni kati ya 2 na 3, na√500 ni10√5. Hivyo√500 ni kati ya 20 na 30.
Mfano unaofuata ni sawa na mifano ya awali, lakini kwa vigezo.
Kurahisisha:√x3.
- Jibu
-
√x3Rewrite the radicand as a product using the largest perfect square factor√x2·xRewrite the radical as the product of two radicals√x2·√xSimplifyx√x
Kurahisisha:√b5.
- Jibu
-
b2√b
Kurahisisha:√p9.
- Jibu
-
p4√p
Tunafuata utaratibu huo wakati kuna mgawo katika radical, pia.
Kurahisisha:√25y5.
- Jibu
-
√25y5Rewrite the radicand as a product using the largest perfect square factor.√25y4·yRewrite the radical as the product of two radicals.√25y4·√ySimplify.5y2√y
Kurahisisha:√16x7.
- Jibu
-
4x3√x
Kurahisisha:√49v9.
- Jibu
-
7v4√v
Katika mfano unaofuata wote mara kwa mara na kutofautiana wana mambo kamili ya mraba.
Kurahisisha:√72n7.
- Jibu
-
√72n7Rewrite the radicand as a product using the largest perfect square factor.√36n6·2nRewrite the radical as the product of two radicals.√36n6·√2nSimplify.6n3√2n
Kurahisisha:√32y5.
- Jibu
-
4y2√2y
Kurahisisha:√75a9.
- Jibu
-
5a4√3a
Kurahisisha:√63u3v5.
- Jibu
-
√63u3v5Rewrite the radicand as a product using the largest perfect square factor.√9u2v4·7uvRewrite the radical as the product of two radicals.√9u2v4·√7uvSimplify.3uv2√7uv
Kurahisisha:√98a7b5.
- Jibu
-
7a3b2√2ab
Kurahisisha:√180m9n11.
- Jibu
-
6m4n5√5mn
Tumeona jinsi ya kutumia Order of Operations kurahisisha baadhi ya maneno na radicals. Ili kurahisisha√25+√144 we must simplify each square root separately first, then add to get the sum of 17.
Maneno√17+√7 hayawezi kurahisishwa-kuanza tunatarajia kurahisisha kila mizizi ya mraba, lakini wala 17 wala 7 ina sababu kamili ya mraba.
Katika mfano unaofuata, tuna jumla ya integer na mizizi ya mraba. Sisi kurahisisha mizizi mraba lakini hawezi kuongeza kujieleza kusababisha kwa integer.
Kurahisisha:3+√32.
- Jibu
-
3+√32Rewrite the radicand as a product using the largest perfect square factor.3+√16·2Rewrite the radical as the product of two radicals.3+√16·√2Simplify.3+4√2
Masharti hayapatikani na hivyo hatuwezi kuziongezea. Kujaribu kuongeza integer na radical ni kama kujaribu kuongeza integer na variable-wao si kama maneno!
Kurahisisha:5+√75.
- Jibu
-
5+5√3
Kurahisisha:2+√98.
- Jibu
-
2+7√2
Mfano unaofuata unajumuisha sehemu yenye radical katika nambari. Kumbuka kwamba ili kurahisisha sehemu unahitaji jambo la kawaida katika nambari na denominator.
Kurahisisha:4−√482.
- Jibu
-
4−√482Rewrite the radicand as a product using thelargest perfect square factor.4−√16·32Rewrite the radical as the product of two radicals.4−√16·√32Simplify.4−4√32Factor the common factor from thenumerator.4(1−√3)2Remove the common factor, 2, from thenumerator and denominator.2(1−√3)
Kurahisisha:10−√755.
- Jibu
-
2−√3
Kurahisisha:6−√453.
- Jibu
-
2−√5
Tumia mali ya Quotient ili kurahisisha Mizizi ya Mraba
Wakati wowote unapaswa kurahisisha mizizi ya mraba, hatua ya kwanza unapaswa kuchukua ni kuamua kama radicand ni mraba kamilifu. Sehemu kamili ya mraba ni sehemu ambayo namba zote na denominator ni mraba kamilifu.
Kurahisisha:√964.
- Jibu
-
√964Since(38)238
Kurahisisha:√2516.
- Jibu
-
54
Kurahisisha:√4981.
- Jibu
-
79
Ikiwa nambari na denominator zina mambo yoyote ya kawaida, uwaondoe. Unaweza kupata sehemu kamili ya mraba!
Kurahisisha:√4580.
- Jibu
-
√4580Simplify inside the radical first. Rewrite showing the common factors of the numerator and denominator.√5·95·16Simplify the fraction by removing common factors.√916Simplify.(34)2=91634
Kurahisisha:√7548.
- Jibu
-
54
Kurahisisha:√98162.
- Jibu
-
79
Katika mfano wa mwisho, hatua yetu ya kwanza ilikuwa kurahisisha sehemu chini ya radical kwa kuondoa mambo ya kawaida. Katika mfano unaofuata tutatumia Mali ya Quotient ili kurahisisha chini ya radical. Sisi kugawanya besi kama kwa kutoa exponents yao,aman=am−n,a≠0.
Kurahisisha:√m6m4.
- Jibu
-
√m6m4Simplify the fraction inside the radical first√m2Divide the like bases by subtracting the exponents.Simplify.m
Kurahisisha:√a8a6.
- Jibu
-
a
Kurahisisha:√x14x10.
- Jibu
-
x2
Kurahisisha:√48p73p3.
- Jibu
-
√48p73p3Simplify the fraction inside the radical first.√16p4Simplify.4p2
Kurahisisha:√75x53x.
- Jibu
-
5x2
Kurahisisha:√72z122z10.
- Jibu
-
6z
Kumbuka Quotient kwa Mali Nguvu? Ni alisema tunaweza kuongeza sehemu ya nguvu kwa kuongeza nambari na denominator kwa nguvu tofauti.
(ab)m=ambm,b≠0
Tunaweza kutumia mali sawa ili kurahisisha mizizi ya mraba ya sehemu. Baada ya kuondoa mambo yote ya kawaida kutoka kwa nambari na denominator, ikiwa sehemu sio mraba kamili, tunapunguza namba na denominator tofauti.
Ikiwa, b ni namba zisizo hasi halisi nab≠0, basi
√ab=√a√b
Kurahisisha:√2164.
- Jibu
-
√2164We cannot simplify the fraction inside the radical. Rewrite using the quotient property.√21√64Simplify the square root of 64. The numerator cannot be simplified.√218
Kurahisisha:√1949.
- Jibu
-
√197
Kurahisisha:√2881
- Jibu
-
2√79
Jinsi ya kutumia Mali ya Quotient ili kurahisisha Mizizi ya Mraba
Kurahisisha:√27m3196.
- Jibu
-
Kurahisisha:√24p349
- Jibu
-
2p√6p7
Kurahisisha:√48x5100
- Jibu
-
2x2√3x5
- Kurahisisha sehemu katika radicand, ikiwa inawezekana.
- Matumizi ya Mali Quotient kuandika upya radical kama quotient ya radicals mbili.
- Kurahisisha radicals katika nambari na denominator.
Kurahisisha:√45x5y4.
- Jibu
-
√45x5y4We cannot simplify the fraction inside the radical. Rewrite using the quotient property.√45x5√y4Simplify the radicals in the numerator and the denominator.√9x4√5xy2Simplify.3x2√5xy2
Kurahisisha:√80m3n6
- Jibu
-
4m√5mn3
Kurahisisha:√54u7v8.
- Jibu
-
3u3√6uv4
Hakikisha kurahisisha sehemu katika radicna kwanza, ikiwa inawezekana.
Kurahisisha:√81d925d4.
- Jibu
-
√81d925d4Simplify the fraction in the radicand.√81d525Rewrite using the quotient property.√81d5√25Simplify the radicals in the numerator and the denominator.√81d4√d5Simplify.9d2√d5
Kurahisisha:√64x79x3.
- Jibu
-
8x23
Kurahisisha:√16a9100a5.
- Jibu
-
2a25
Kurahisisha:√18p5q732pq2.
- Jibu
-
√18p5q732pq2Simplify the fraction in the radicand.√9p4q516Rewrite using the quotient property.√9p4q5√16Simplify the radicals in the numerator and the denominator.√9p4q4√q4Simplify.3p2q2√q4
Kurahisisha:√50x5y372x4y.
- Jibu
-
5y√x6
Kurahisisha:√48m7n2125m5n9.
- Jibu
-
4m√35n3√5n
Dhana muhimu
- Kilichorahisishwa Square Root√a inachukuliwa kilichorahisishwa kama hana sababu kamilifu za mraba.
- Bidhaa Mali ya Mizizi Square Kama, b ni zisizo hasi idadi halisi, basi
√ab=√a·√b
- Kurahisisha Mizizi ya Mraba Kutumia Mali ya Bidhaa Ili kurahisisha mizizi ya mraba kwa kutumia Mali ya Bidhaa:
- Pata sababu kubwa zaidi ya mraba ya radicand. Andika upya radicna kama bidhaa kwa kutumia sababu kamili ya mraba.
- Tumia utawala wa bidhaa ili uandike upya radical kama bidhaa ya radicals mbili.
- Kurahisisha mizizi ya mraba wa mraba kamilifu.
- Mali ya Quotient ya Mizizi ya Mraba Kama, b ni namba zisizo hasi halisi nab≠0, basi
√ab=√a√b
- Kurahisisha Mizizi ya Mraba Kutumia Mali ya Quotient Ili kurahisisha mizizi ya mraba kwa kutumia Mali ya Quotient:
- Kurahisisha sehemu katika radicand, ikiwa inawezekana.
- Tumia Utawala wa Quotient kuandika upya radical kama quotient ya radicals mbili.
- Kurahisisha radicals katika nambari na denominator.