Skip to main content
Global

2.5E: Mazoezi ya Sehemu ya 2.5

  • Page ID
    178961
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Katika mazoezi ya 1 - 4, weka\( ε − δ\) ufafanuzi sahihi kwa kila taarifa zilizotolewa.

    1)\(\displaystyle \lim_{x →a}f(x)=N\)

    2)\(\displaystyle \lim_{t →b}g(t)=M\)

    Jibu
    Kwa kila\( ε >0\), kuna\( δ >0\), ili kama\(0 <|t −b| < δ\), basi\(|g(t) −M| < ε\)

    3)\(\displaystyle \lim_{x →c}h(x)=L\)

    4)\(\displaystyle \lim_{x →a} φ(x)=A\)

    Jibu
    Kwa kila\( ε >0\), kuna\( δ >0\), ili kama\(0 <|x −a| < δ\), basi\(| φ(x) −A| < ε\)

    Grafu inayofuata ya kazi\(f\) inatimiza\(\displaystyle \lim_{x →2}f(x)=2\). Katika mazoezi yafuatayo, onyesha thamani ya\( δ >0\) kwamba satisfies kila taarifa.

    kazi inayotolewa katika roboduara moja kwa x 0. Ni kuongezeka concave up kazi, na pointi takriban (0,0), (1, .5), (2,2), na (3,4)." style="width: 417px; height: 422px;" width="417px" height="422px" src="https://math.libretexts.org/@api/dek...02_05_204.jpeg">

    5) Ikiwa\(0 <|x −2| < δ\), basi\(|f(x) −2| <1\).

    6) Ikiwa\(0 <|x −2| < δ\), basi\(|f(x) −2| <0.5\).

    Jibu
    \( δ ≤0.25\)

    Grafu inayofuata ya kazi\(f\) inatimiza\(\displaystyle \lim_{x →3}f(x)= −1\). Katika mazoezi yafuatayo, onyesha thamani ya\( δ >0\) kwamba satisfies kila taarifa.

    Grafu ya kazi ya kupungua kwa mstari, na pointi (0,2), (1,1), (2,0), (3, -1), (4, -2), na kadhalika kwa x= 0." style="width: 417px; height: 422px;" width="417px" height="422px" src="https://math.libretexts.org/@api/dek...02_05_205.jpeg">

    7) Ikiwa\(0 <|x −3| < δ\), basi\(|f(x)+1| <1\).

    8) Ikiwa\(0 <|x −3| < δ\), basi\(|f(x)+1| <2\).

    Jibu
    \( δ ≤2\)

    Grafu inayofuata ya kazi\(f\) inatimiza\(\displaystyle \lim_{x →3}f(x)=2\). Katika mazoezi yafuatayo, kwa kila thamani ya\( ε\), kupata thamani ya\( δ >0\) vile kwamba ufafanuzi sahihi wa kikomo ana kweli.

    Grafu ya kazi inayoongezeka ya mstari inayoingiliana na mhimili x karibu (2.25, 0) na kupitia pointi (3,2) na, takriban, (1, -5) na (4,5).

    9)\( ε=1.5\)

    10)\( ε=3\)

    Jibu
    \( δ ≤1\)

    [T] Katika mazoezi 11 - 12, tumia calculator ya graphing ili kupata idadi kama\( δ\) vile taarifa zinashikilia kweli.

    11)\(\left|\sin(2x) −\frac{1}{2}\right| <0.1\), wakati wowote\(\left|x −\frac{ π}{12}\right| < δ\)

    12)\(\left|\sqrt{x −4} −2\right| <0.1\), wakati wowote\(|x −8| < δ\)

    Jibu
    \( δ <0.3900\)

    Katika mazoezi 13 - 17, tumia ufafanuzi sahihi wa kikomo ili kuthibitisha mipaka iliyotolewa.

    13)\(\displaystyle \lim_{x →2}\,(5x+8)=18\)

    14)\(\displaystyle \lim_{x →3}\frac{x^2 −9}{x −3}=6\)

    Jibu
    Hebu\( δ= ε\). Ikiwa\(0 <|x −3| < ε\), basi\(\left|\dfrac{x^2 −9}{x −3} - 6\right| = \left|\dfrac{(x+3)(x −3)}{x −3} - 6\right| = |x+3 −6|=|x −3| < ε\).

    15)\(\displaystyle \lim_{x →2}\frac{2x^2 −3x −2}{x −2}=5\)

    16)\(\displaystyle \lim_{x →0}x^4=0\)

    Jibu
    Hebu\( δ=\sqrt[4]{ ε}\). Ikiwa\(0 <|x| <\sqrt[4]{ ε}\), basi\(\left|x^4-0\right|=x^4 < ε\).

    17)\(\displaystyle \lim_{x →2}\,(x^2+2x)=8\)

    Katika mazoezi 18 - 20, tumia ufafanuzi sahihi wa kikomo ili kuthibitisha mipaka iliyopewa upande mmoja.

    18)\(\displaystyle \lim_{x →5^ −}\sqrt{5 −x}=0\)

    Jibu
    Hebu\( δ= ε^2\). Kama\(- ε^2 < x - 5 < 0,\) tunaweza kuzidisha\(-1\) kwa njia ya kupata\(0 <5-x < ε^2.\)
    Kisha\(\left|\sqrt{5 −x} - 0\right|=\sqrt{5 −x} < \sqrt{ ε^2} = ε\).

    19)\(\displaystyle \lim_{x →0^+}f(x)= −2\), wapi\(f(x)=\begin{cases}8x −3, & \text{if }x <0\\4x −2, & \text{if }x ≥0\end{cases}\).

    20)\(\displaystyle \lim_{x →1^ −}f(x)=3\), wapi\(f(x)=\begin{cases}5x −2, & \text{if }x <1\\7x −1, & \text{if }x ≥1\end{cases}\).

    Jibu
    Hebu\( δ= ε/5\). Kama\( − ε/5 < x - 1 <0,\) tunaweza kuzidisha\(-1\) kwa njia ya kupata\(0 <1-x < ε/5.\)
    Kisha\(|f(x) −3|=|5x-2-3| = |5x −5| = 5(1-x),\) tangu\(x <1\) hapa.
    Na\(5(1-x) < 5( ε/5) = ε\).

    Katika mazoezi 21 - 23, tumia ufafanuzi sahihi wa kikomo ili kuthibitisha mipaka iliyopewa usio na kipimo.

    21)\(\displaystyle \lim_{x →0}\frac{1}{x^2}= ∞\)

    22)\(\displaystyle \lim_{x → −1}\frac{3}{(x+1)^2}= ∞\)

    Jibu
    Hebu\( δ=\sqrt{\frac{3}{N}}\). Ikiwa\(0 <|x+1| <\sqrt{\frac{3}{N}}\), basi\(f(x)=\frac{3}{(x+1)^2} >N\).

    23)\(\displaystyle \lim_{x →2} −\frac{1}{(x −2)^2}= − ∞\)

    24) Mhandisi anatumia mashine ya kukata mraba gorofa ya Aerogel ya eneo hilo\(144 \,\text{cm}^2\). Kama kuna upeo wa makosa kuvumiliana katika eneo la\(8 \,\text{cm}^2\), jinsi usahihi lazima mhandisi kukata upande, kuchukua pande zote na urefu sawa? Nambari hizi\( δ\) zinahusianaje na\( ε\)\(a\),, na\(L\)?

    Jibu
    \(0.033 \text{ cm}, \, ε=8,\, δ=0.33,\,a=12,\,L=144\)

    25) Tumia ufafanuzi sahihi wa kikomo ili kuthibitisha kwamba kikomo kinachofuata haipo:\(\displaystyle \lim_{x →1}\frac{|x −1|}{x −1}.\)

    26) Kutumia ufafanuzi sahihi wa mipaka, kuthibitisha kwamba\(\displaystyle \lim_{x →0}f(x)\) haipo, kutokana na kwamba\(f(x)\) ni kazi dari. (kidokezo: Jaribu yoyote\( δ <1\).)

    Jibu
    Majibu inaweza sana.

    27) Kutumia ufafanuzi sahihi wa mipaka, kuthibitisha kwamba\(\displaystyle \lim_{x →0}f(x)\) haipo:\(f(x)=\begin{cases}1, & \text{if }x\text{ is rational}\\0, & \text{if }x\text{ is irrational}\end{cases}\). (Kidokezo: Fikiria jinsi unaweza daima kuchagua idadi ya busara\(0 <d\), >

    28) Kwa kutumia ufafanuzi sahihi wa mipaka, kuamua\(\displaystyle \lim_{x →0}f(x)\) kwa\(f(x)=\begin{cases}x, & \text{if }x\text{ is rational}\\0, & \text{if }x\text{ is irrational}\end{cases}\). (Kidokezo: Kuvunja katika kesi mbili,\(x\) busara na\(x\) irrational.)

    Jibu
    \(0\)

    29) Kutumia kazi kutoka kwa zoezi la awali, tumia ufafanuzi sahihi wa mipaka ili kuonyesha kwamba\(\displaystyle \lim_{x →a}f(x)\) haipo\(a ≠0\)

    Kwa mazoezi 30 - 32, tuseme kwamba\(\displaystyle \lim_{x →a}f(x)=L\) na\(\displaystyle \lim_{x →a}g(x)=M\) zote mbili zipo. Tumia ufafanuzi sahihi wa mipaka ili kuthibitisha sheria zifuatazo za kikomo:

    30)\(\displaystyle \lim_{x →a}(f(x) −g(x))=L −M\)

    Jibu
    \(f(x) −g(x)=f(x)+( −1)g(x)\)

    31)\(\displaystyle \lim_{x →a}[cf(x)]=cL\) kwa mara yoyote halisi\(c\) (dokezo: Fikiria kesi mbili:\(c=0\) na\(c ≠0\).)

    32)\(\displaystyle \lim_{x →a}[f(x)g(x)]=LM\). (Kidokezo:\(|f(x)g(x) −LM|= |f(x)g(x) −f(x)M +f(x)M −LM| ≤|f(x)||g(x) −M| +|M||f(x) −L|.)\)

    Jibu
    Majibu yanaweza kutofautiana.