Skip to main content
Global

10.8: Vectors

  • Page ID
    178508
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Malengo ya kujifunza
    • Tazama wadudu kijiometri.
    • Pata ukubwa na mwelekeo.
    • Kufanya kuongeza vector na kuzidisha scalar.
    • Pata fomu ya sehemu ya vector.
    • Kupata kitengo vector katika mwelekeo wa\(v\).
    • Kufanya shughuli na wadudu katika suala la\(i\) na\(j\).
    • Pata bidhaa ya dot ya vectors mbili.

    ndege ni flying katika airspeed ya\(200\) maili kwa saa inaongozwa juu ya kuzaa SE ya\(140°\). Upepo wa kaskazini (kutoka kaskazini hadi kusini) unapiga\(16.2\) maili kwa saa, kama inavyoonekana kwenye Kielelezo\(\PageIndex{1}\). Je! Kasi ya ardhi na kuzaa halisi ya ndege ni nini?

    Picha ya mpango wa kuruka SE kwa digrii 140 na upepo wa kaskazini unaopiga

    Kielelezo\(\PageIndex{1}\)

    Kasi ya chini inahusu kasi ya ndege ikilinganishwa na ardhi. Airspeed inahusu kasi ndege inayoweza kusafiri ikilinganishwa na molekuli yake ya hewa inayozunguka. Kiasi hiki mbili si sawa kwa sababu ya athari za upepo. Katika sehemu ya awali, tulitumia pembetatu kutatua tatizo sawa linalohusisha harakati za boti. Baadaye katika sehemu hii, tutapata kasi ya ardhi ya ndege na kuzaa, wakati wa kuchunguza njia nyingine ya matatizo ya aina hii. Kwanza, hata hivyo, hebu tuchunguze misingi ya vectors.

    Mtazamo wa Kijiometri wa Vectors

    Vector ni kiasi maalum inayotolewa kama sehemu ya mstari na mshale kwenye mwisho mmoja. Ina hatua ya awali, ambapo huanza, na hatua ya mwisho, ambapo inaisha. Vector inaelezwa na ukubwa wake, au urefu wa mstari, na mwelekeo wake, unaonyeshwa na kichwa cha mshale kwenye hatua ya mwisho. Hivyo, vector ni sehemu iliyoelekezwa ya mstari. Kuna alama mbalimbali zinazotofautisha wadudu kutoka kwa kiasi kingine:

    • Kesi ya chini, aina ya ujasiri, na au bila mshale juu kama vile \(u\)\(w\),\(\overrightarrow{v}\),\(\overrightarrow{u}\),\(\overrightarrow{w}\).
    • Kutokana hatua ya awali\(P\) na uhakika terminal\(Q\), vector inaweza kuwakilishwa kama\(\overrightarrow{PQ}\). Mshale juu ni nini kinaonyesha kwamba si tu mstari, lakini sehemu ya mstari iliyoongozwa.
    • Kutokana hatua ya awali ya\((0,0)\) na terminal uhakika\((a,b)\), vector inaweza kuwakilishwa kama\(⟨a,b⟩\).

    Ishara hii ya mwisho\(⟨a,b⟩\) ina umuhimu maalum. Inaitwa nafasi ya kawaida. Vector ya msimamo ina hatua ya awali\((0,0)\) na hatua ya mwisho\(⟨a,b⟩\). Ili kubadilisha vector yoyote katika vector nafasi, tunafikiri juu ya mabadiliko katika x -kuratibu na mabadiliko katika y -kuratibu. Hivyo, kama hatua ya awali ya vector\(\overrightarrow{CD}\) ni\(C(x_1,y_1)\) na hatua ya mwisho ni\(D(x_2,y_2)\), basi vector nafasi inapatikana kwa kuhesabu

    \[\begin{align*} \overrightarrow{AB} &= ⟨x_2−x_1,y_2−y_1⟩ \\[4pt] &= ⟨a,b⟩ \end{align*}\]

    Katika Kielelezo\(\PageIndex{2}\), tunaona vector ya awali\(\overrightarrow{CD}\) na vector nafasi\(\overrightarrow{AB}\).

    Plot ya awali vector CD katika bluu na nafasi vector AB katika machungwa kupanua kutoka asili.

    Kielelezo\(\PageIndex{2}\)

    MALI YA VECTORS

    Vector ni sehemu iliyoelekezwa ya mstari na hatua ya awali na hatua ya mwisho. Vectors hutambuliwa kwa ukubwa, au urefu wa mstari, na mwelekeo, unaowakilishwa na kichwa cha mshale kinachoelekea kuelekea hatua ya mwisho. Vector ya msimamo ina hatua ya awali\((0,0)\) na inatambuliwa na hatua yake ya mwisho\(⟨a,b⟩\).

    Mfano\(\PageIndex{1A}\): Find the Position Vector

    Fikiria vector ambao hatua ya awali ni\(P(2,3)\) na uhakika wa mwisho ni\(Q(6,4)\). Kupata msimamo vector.

    Suluhisho

    Vector msimamo hupatikana kwa kuondoa moja\(x\) -kuratibu kutoka nyingine\(x\) -kuratibu, na moja\(y\) -kuratibu kutoka nyingine\(y\) -kuratibu. Hivyo

    \[\begin{align*} v &= ⟨6−2,4−3⟩ \\[4pt] &=⟨4,1⟩ \end{align*}\]

    vector msimamo huanza saa\((0,0)\) na kumalizika saa\((4,1)\). Grafu ya vectors zote mbili zinaonyeshwa kwenye Kielelezo\(\PageIndex{3}\).

    Plot ya vector ya awali katika bluu na vector nafasi katika machungwa kupanua kutoka asili.

    Kielelezo\(\PageIndex{3}\)

    Tunaona kwamba vector msimamo ni\(⟨4,1⟩\).

    Mfano\(\PageIndex{1B}\): Drawing a Vector with the Given Criteria and Its Equivalent Position Vector

    Kupata msimamo vector kutokana na kwamba vector\(v\) ina hatua ya awali katika\((−3,2)\) na uhakika terminal katika\((4,5)\), kisha grafu wadudu wote katika ndege moja.

    Suluhisho

    Vector msimamo hupatikana kwa kutumia hesabu zifuatazo:

    \[\begin{align*} v &= ⟨4−(−3),5−2⟩ \\[4pt] &= ⟨7,3⟩ \end{align*}\]

    Hivyo, vector nafasi huanza saa\((0,0)\) na kumalizika saa\((7,3)\). Angalia Kielelezo\(\PageIndex{4}\).

    Plot ya vectors mbili kupewa nafasi yao sawa vector.

    Kielelezo\(\PageIndex{4}\)

    Zoezi\(\PageIndex{1}\)

    Chora vector\(\vec{v}\) inayounganisha kutoka asili hadi hatua\((3,5)\).

    Jibu

    Vector kutoka asili hadi (3,5) - mstari na mshale kwenye mwisho wa (3,5).

    Kielelezo\(\PageIndex{5}\)

    Kupata Ukubwa na Mwelekeo

    Kufanya kazi na vector, tunahitaji kuwa na uwezo wa kupata ukubwa wake na mwelekeo wake. Tunapata ukubwa wake kwa kutumia Theorem ya Pythagorean au formula ya umbali, na tunapata mwelekeo wake kwa kutumia kazi ya tangent inverse.

    UKUBWA NA MWELEKEO WA VECTOR

    Kutokana na vector nafasi\(\vec{v}=⟨a,b⟩\), ukubwa hupatikana\(| v |=\sqrt{a^2+b^2}\) na.Mwelekeo ni sawa na angle iliyoundwa na\(x\) -axis, au kwa\(y\) -axis, kulingana na programu. Kwa vector msimamo, mwelekeo hupatikana na\(\tan \theta=\left(\dfrac{b}{a}\right)⇒\theta={\tan}^{−1}\left(\dfrac{b}{a}\right)\), kama inavyoonekana katika Kielelezo\(\PageIndex{6}\).

    Standard njama ya msimamo vector (a, b) na ukubwa |v| kupanua katika Q1 katika digrii theta.

    Kielelezo\(\PageIndex{6}\)

    Vectors mbili\(\vec{v}\) na\(\vec{u}\) huchukuliwa kuwa sawa ikiwa wana ukubwa sawa na mwelekeo huo. Zaidi ya hayo, ikiwa wadudu wote wana vector sawa msimamo, wao ni sawa.

    Mfano\(\PageIndex{2A}\): Finding the Magnitude and Direction of a Vector

    Pata ukubwa na mwelekeo wa vector na hatua ya awali\(P(−8,1)\) na hatua ya terminal\(Q(−2,−5)\) .Chora vector.

    Suluhisho

    Kwanza, pata vector ya msimamo.

    \[\begin{align*} u &= ⟨−2,−(−8),−5−1⟩ \\[4pt] &= ⟨6,−6⟩ \end{align*}\]

    Tunatumia Theorem ya Pythagorean kupata ukubwa.

    \[\begin{align*} |u| &= \sqrt{{(6)}^2+{(−6)}^2} \\[4pt] &= \sqrt{72} \\[4pt] &=\sqrt{62} \end{align*}\]

    Mwelekeo hutolewa kama

    \[\begin{align*} \tan \theta & =\dfrac{−6}{6}=−1\rightarrow \theta={\tan}^{−1}(−1) \\[4pt] &= −45° \end{align*}\]

    Hata hivyo, angle imekoma katika quadrant ya nne, kwa hiyo tunaongeza\(360°\) kupata angle nzuri. Hivyo,\(−45°+360°=315°\). Angalia Kielelezo\(\PageIndex{7}\).

    Plot ya vector nafasi kupanua katika Q4 kutoka asili na ukubwa 6rad2.

    Kielelezo\(\PageIndex{7}\)

    Mfano\(\PageIndex{2B}\): Showing That Two Vectors Are Equal

    Onyesha kwamba vector\(\vec{v}\) na hatua ya awali katika\((5,−3)\) na terminal uhakika katika\((−1,2)\) ni sawa\(\vec{u}\) na vector na hatua ya awali katika\((−1,−3)\) na terminal uhakika katika\((−7,2)\). Chora vector msimamo kwenye gridi sawa\(\vec{v}\) na\(\vec{u}\). Kisha, pata ukubwa na mwelekeo wa kila vector.

    Suluhisho

    Kama inavyoonekana katika Kielelezo\(\PageIndex{8}\), kuteka vector\(\vec{v}\) kuanzia katika hatua ya awali\((5,−3)\) na terminal\((−1,2)\). Chora vector\(\vec{u}\) na hatua ya awali\((−1,−3)\) na hatua ya mwisho\((−7,2)\). Kupata nafasi ya kiwango kwa kila.

    Next, kupata na mchoro nafasi vector kwa\(\vec{v}\) na\(\vec{u}\). Tuna

    \[\begin{align*} v &= ⟨−1−5,2−(−3)⟩ \\[4pt] &= ⟨−6,5⟩u \\[4pt] &= ⟨−7−(−1),2−(−3)⟩ \\[4pt] & =⟨−6,5⟩ \end{align*}\]

    Kwa kuwa vectors nafasi ni sawa,\(\vec{v}\) na\(\vec{u}\) ni sawa.

    Njia mbadala ya kuangalia usawa wa vector ni kuonyesha kwamba ukubwa na mwelekeo ni sawa kwa wadudu wote. Ili kuonyesha kwamba ukubwa ni sawa, tumia Theorem ya Pythagorean.

    \[\begin{align*} |v| &= \sqrt{{(−1−5)}^2+{(2−(−3))}^2} \\[4pt] &= \sqrt{{(−6)}^2+{(5)}^2} \\[4pt] &= \sqrt{36+25} \\[4pt] &= \sqrt{61} \\[4pt] |u| &= \sqrt{{(−7−(−1))}^2+{(2−(−3))}^2} \\[4pt] &=\sqrt{{(−6)}^2+{(5)}^2} \\[4pt] &= \sqrt{36+25} \\[4pt] &= \sqrt{61} \end{align*}\]

    Kama ukubwa ni sawa, sasa tunahitaji kuthibitisha mwelekeo. Kutumia kazi ya tangent na vector nafasi inatoa

    \[\begin{align*} \tan \theta &= −\dfrac{5}{6}⇒\theta={\tan}^{−1}\left(−\dfrac{5}{6}\right) \\[4pt] & = −39.8° \end{align*}\]

    Hata hivyo, tunaweza kuona kwamba vector msimamo huisha katika roboduara ya pili, hivyo tunaongeza\(180°\). Hivyo, mwelekeo ni\(−39.8°+180°=140.2°\).

    Plot ya vectors mbili kupewa nafasi yao sawa vector.

    Kielelezo\(\PageIndex{8}\)

    Kufanya Vector Aidha na Scalar Kuzidisha

    Sasa kwa kuwa tunaelewa mali ya vectors, tunaweza kufanya shughuli zinazowashirikisha. Wakati ni rahisi kufikiria vector\(u=⟨x,y⟩\) kama mshale au sehemu iliyoongozwa mstari kutoka asili hadi hatua\((x,y)\), wadudu wanaweza kuwa iko mahali popote katika ndege. Jumla ya vectors mbili\(\vec{u}\) na\(\vec{v}\), au kuongeza vector, hutoa vector ya tatu\(\overrightarrow{u+ v}\), vector matokeo.

    Ili kupata\(\overrightarrow{u + v}\), sisi kwanza kuteka vector\(\vec{u}\), na kutoka mwisho terminal ya\(\vec{u}\), sisi inayotolewa vector\(\vec{v}\). Kwa maneno mengine, tuna hatua ya awali ya\(\vec{v}\) kukutana mwisho terminal ya\(\vec{u}\). Msimamo huu unafanana na dhana kwamba tunahamia pamoja na vector ya kwanza na kisha, kutoka kwa hatua yake ya mwisho, tunahamia pamoja na vector ya pili. Jumla\(\overrightarrow{u + v}\) ni vector matokeo kwa sababu matokeo kutokana na kuongeza au kuondoa ya wadudu wawili. vector matokeo husafiri moja kwa moja kutoka mwanzo wa\(\vec{u}\) hadi mwisho wa\(\vec{v}\) katika njia moja kwa moja, kama inavyoonekana katika Kielelezo\(\PageIndex{9}\).

    Mifumo ya kuongeza vector na kuondoa.

    Kielelezo\(\PageIndex{9}\)

    Kuondoa vector ni sawa na kuongeza vector. Ili kupata\(\overrightarrow{u − v}\), angalia kama\(\overrightarrow{u + (−v)}\). Kuongeza\(\overrightarrow{−v}\) ni kugeuza mwelekeo wa\(\vec{v}\) na kuongeza hadi mwisho wa\(\vec{u}\). vector mpya huanza mwanzoni mwa\(\vec{u}\) na ataacha katika hatua ya mwisho ya\(\overrightarrow{−v}\). Angalia Kielelezo\(\PageIndex{10}\) kwa Visual kwamba kulinganisha vector kuongeza na vector kutoa kutumia parallelograms.

    Kuonyesha kuongeza vector na kuondoa na parallelograms. Kwa kuongeza, msingi ni u, upande ni v, mshazari kuunganisha mwanzo wa msingi hadi mwisho wa upande ni u+v Kwa kuondoa, juu ni u, upande ni -v, na mshazari kuunganisha mwanzo wa juu hadi mwisho wa upande ni u-v.

    Kielelezo\(\PageIndex{10}\)

    Mfano\(\PageIndex{3}\): Adding and Subtracting Vectors

    kutokana\(u=⟨3,−2⟩\) na\(v=⟨−1,4⟩\), kupata wadudu wawili mpya\(\overrightarrow{u + v}\), na\(\overrightarrow{u − v}\).

    Suluhisho

    Ili kupata jumla ya vectors mbili, tunaongeza vipengele. Hivyo,

    \[ \begin{align*} u+v &= ⟨3,−2⟩+⟨−1,4⟩ \\[4pt] &= ⟨3+(−1),−2+4⟩ \\[4pt] &=⟨2,2⟩ \end{align*}\]

    Angalia Kielelezo\(\PageIndex{11a}\).

    Ili kupata tofauti ya vectors mbili, ongeza vipengele vibaya\(\vec{v}\) vya\(\vec{u}\). Hivyo,

    \[\begin{align*}u+(−v) &=⟨3,−2⟩+⟨1,−4⟩ \\[4pt] &= ⟨3+1,−2+(−4)⟩ \\[4pt] &= ⟨4,−6⟩ \end{align*}\]

    Angalia Kielelezo\(\PageIndex{11b}\).

    Michoro zaidi ya kuongeza vector na kuondoa.

    Kielelezo\(\PageIndex{11}\): (a) Jumla ya wadudu wawili (b) Tofauti ya wadudu wawili

    Kuzidisha Kwa Scalar

    Wakati kuongeza na kuondoa vectors inatupa vector mpya na ukubwa tofauti na mwelekeo, mchakato wa kuzidisha vector kwa scalar, mara kwa mara, mabadiliko tu ukubwa wa vector au urefu wa mstari. Uzidishaji wa Scalar hauna athari juu ya mwelekeo isipokuwa scalar ni hasi, katika hali hiyo mwelekeo wa vector kusababisha ni kinyume na mwelekeo wa vector ya awali.

    KUZIDISHA SCALAR

    Kuzidisha kwa scalar kunahusisha bidhaa ya vector na scalar. Kila sehemu ya vector huongezeka kwa scalar. Hivyo, kuzidisha\(v=⟨a,b⟩\) na\(k\), tuna

    \(kv=⟨ka,kb⟩\)

    Ukubwa tu hubadilika, isipokuwa\(k\) ni hasi, na kisha vector inarudia mwelekeo.

    Mfano\(\PageIndex{4}\): Performing Scalar Multiplication

    Kutokana vector \(\vec{v}=⟨3,1⟩\), kupata\(3\vec{v}\)\(\dfrac{1}{2}\),, na\(\vec{−v}\).

    Suluhisho

    Angalia Kielelezo\(\PageIndex{12}\) kwa tafsiri ya kijiometri. Ikiwa\(\vec{v}=⟨3,1⟩\), basi

    \[\begin{align*} 3v &= ⟨3⋅3,3⋅1⟩ \\[4pt] &= ⟨9,3⟩ \\[4pt] \dfrac{1}{2}v &= ⟨\dfrac{1}{2}⋅3,\dfrac{1}{2}⋅1⟩ \\[4pt] &=⟨\dfrac{3}{2},\dfrac{1}{2}⟩ \\[4pt] −v &=⟨−3,−1⟩ \end{align*}\]

    Inaonyesha athari za kuongeza vector: 3x, 1x, .5x, na -1x. 3x ni mara tatu kwa muda mrefu, 1x anakaa sawa, .5x nusu urefu, na -1x reverses mwelekeo wa vector lakini anaendelea urefu sawa. Wengine huweka mwelekeo huo; tu mabadiliko ya ukubwa.

    Kielelezo\(\PageIndex{12}\)

    Uchambuzi

    Kumbuka kwamba vector\(3\vec{v}\) ni mara tatu urefu wa\(\vec{v}\),\(\dfrac{1}{2}\vec{v}\) ni nusu urefu wa\(\vec{v}\), na\(\overrightarrow{–v}\) ni urefu sawa wa\(\vec{v}\), lakini katika mwelekeo kinyume.

    Zoezi\(\PageIndex{2}\)

    Kupata scalar nyingi\(3u\) kupewa\(\vec{u}=⟨5,4⟩\).

    Jibu

    \(3u=⟨15,12⟩\)

    Mfano\(\PageIndex{5}\)

    Kupata equation linear kutatua kwa yafuatayo kiasi haijulikani: Nambari moja unazidi idadi nyingine\(17\) na na jumla yao ni\(31\). Kupata namba mbili.

    Suluhisho

    Kwanza, tunapaswa kuzidisha kila vector kwa scalar.

    \[\begin{align*} 3u &= 3⟨3,−2⟩ \\[4pt] &= ⟨9,−6⟩ \\[4pt] 2v &= 2⟨−1,4⟩ \\[4pt] &= ⟨−2,8⟩ \end{align*}\]

    Kisha, ongeza mbili pamoja.

    \[\begin{align*} w &= 3u+2v \\[4pt] &=⟨9,−6⟩+⟨−2,8⟩ \\[4pt] &= ⟨9−2,−6+8⟩ \\[4pt] &= ⟨7,2⟩ \end{align*}\]

    Kwa hiyo,\(w=⟨7,2⟩\).

    Kutafuta Fomu ya Kipengele

    Katika baadhi ya maombi kuwashirikisha wadudu, ni muhimu kwa sisi kuwa na uwezo wa kuvunja vector chini katika sehemu yake. Vectors zinajumuisha vipengele viwili: sehemu ya usawa ni\(x\) mwelekeo, na sehemu ya wima ni\(y\) mwelekeo. Kwa mfano, tunaweza kuona katika grafu katika Kielelezo\(\PageIndex{13}\) kwamba vector nafasi\(⟨2,3⟩\) linatokana na kuongeza wadudu\(v_1\) na\(v_2\). Tuna\(v_2\) na hatua ya awali\((0,0)\) na uhakika terminal\((2,0)\).

    \[\begin{align*} v_1 &= ⟨2−0,0−0⟩ \\[4pt] &= ⟨2,0⟩ \end{align*}\]

    Pia tuna\(v_2\) na hatua ya awali\((0,0)\) na hatua ya mwisho\((0, 3)\).

    \[\begin{align*} v_2 &= ⟨0−0,3−0⟩ \\[4pt] &= ⟨0,3⟩ \end{align*}\]

    Kwa hiyo, vector nafasi ni

    \[\begin{align*} v &= ⟨2+0,3+0⟩ \\[4pt] &= ⟨2,3⟩ \end{align*}\]

    Kutumia Theorem ya Pythagorean, ukubwa wa\(v_1\) ni\(2\), na ukubwa wa\(v_2\) ni\(3\). Ili kupata ukubwa wa\(v\), tumia formula na vector nafasi.

    \[\begin{align*} |v| &= \sqrt{{|v_1|}^2+{|v_2|}^2} \\[4pt] &= \sqrt{2^2+3^2} \\[4pt] &= \sqrt{13} \end{align*}\]

    Ukubwa wa\(v\) ni\(\sqrt{13}\). Ili kupata mwelekeo, tunatumia kazi ya tangent\(\tan \theta=\dfrac{y}{x}\).

    \[\begin{align*} \tan \theta &= \dfrac{v_2}{v_1} \\[4pt] \tan \theta &= \dfrac{3}{2} \\[4pt] \theta &={\tan}^{−1}\left(\dfrac{3}{2}\right)=56.3° \end{align*}\]

    Mchoro wa vector katika nafasi ya mizizi na vipengele vyake vya usawa na vya wima.

    Kielelezo\(\PageIndex{13}\)

    Hivyo, ukubwa wa\(\vec{v}\) ni\(\sqrt{13}\) na mwelekeo ni\(56.3^{\circ}\) mbali usawa.

    Mfano\(\PageIndex{6}\): Finding the Components of the Vector

    Pata vipengele vya vector \(\vec{v}\)na hatua ya awali\((3,2)\) na hatua ya mwisho\((7,4)\).

    Suluhisho

    Kwanza kupata nafasi ya kawaida.

    \[\begin{align*} v &= ⟨7−3,4−2⟩ \\[4pt] &= ⟨4,2⟩ \end{align*}\]

    Angalia mfano katika Kielelezo\(\PageIndex{14}\).

    Mchoro wa vector katika nafasi ya mizizi na vipengele vyake vya usawa (4,0) na wima (0,2).

    Kielelezo\(\PageIndex{14}\)

    Sehemu ya usawa ni\(\vec{v_1}=⟨4,0⟩\) na sehemu ya wima ni\(\vec{v_2}=⟨0,2⟩\).

    Kupata Vector Unit katika Mwelekeo wa\(v\)

    Mbali na kutafuta vipengele vya vector, ni muhimu pia katika kutatua matatizo ya kupata vector katika mwelekeo sawa na vector iliyotolewa, lakini ya ukubwa\(1\). Tunaita vector na ukubwa wa vector\(1\) kitengo. Tunaweza kisha kuhifadhi mwelekeo wa vector awali wakati kurahisisha mahesabu.

    Vectors kitengo hufafanuliwa katika suala la vipengele. Vector ya kitengo cha usawa imeandikwa kama\(\vec{i}=⟨1,0⟩\) na inaelekezwa kwenye mhimili mzuri wa usawa. Vector kitengo cha wima imeandikwa kama\(\vec{j}=⟨0,1⟩\) na inaelekezwa kwenye mhimili mzuri wa wima. Angalia Kielelezo\(\PageIndex{15}\).

    Plot kuonyesha kitengo wadudu i=91,0) na j= (0,1)

    Kielelezo\(\PageIndex{15}\)

    WADUDU KITENGO

    Kama \(\vec{v}\)ni nonzero vector, basi\(\dfrac{v}{| v |}\) ni kitengo vector katika mwelekeo wa \(v\). Vector yoyote iliyogawanywa na ukubwa wake ni vector kitengo. Angalia kwamba ukubwa daima ni scalar, na kugawa kwa scalar ni sawa na kuzidisha kwa usawa wa scalar.

    Mfano\(\PageIndex{7}\): Finding the Unit Vector in the Direction of \(v\)

    Kupata kitengo vector katika mwelekeo sawa na\(v=⟨−5,12⟩\).

    Suluhisho

    Kwanza, tutapata ukubwa.

    \[\begin{align*} |v| &= \sqrt{{(−5)}^2+{(12)}^2} \\[4pt] &= \sqrt{25+144} \\[4pt] &=\sqrt{169} \\[4pt] &= 13 \end{align*}\]

    Kisha tunagawanya kila sehemu na\(| v |\), ambayo inatoa vector kitengo katika mwelekeo sawa na\(\vec{v}\):

    \(\dfrac{v}{| v |} = −\dfrac{5}{13}i+\dfrac{12}{13}j \)

    au, katika fomu ya sehemu

    \(\dfrac{v}{| v |}= \left \langle -\dfrac{5}{13},\dfrac{12}{13} \right \rangle\)

    Angalia Kielelezo\(\PageIndex{16}\).

    Plot kuonyesha kitengo vector (-5/13, 12/13) katika mwelekeo wa (-5, 12)

    Kielelezo\(\PageIndex{16}\)

    Thibitisha kwamba ukubwa wa vector kitengo ni sawa\(1\). Ukubwa wa\(−\dfrac{5}{13}i+\dfrac{12}{13}j\) hutolewa kama

    \[\begin{align*} \sqrt{ {\left(−\dfrac{5}{13}\right)}^2+{ \left(\dfrac{12}{13}\right) }^2 } &= \sqrt{\dfrac{25}{169}+\dfrac{144}{169}} \\[4pt] &= \sqrt{\dfrac{169}{169}}\\ &=1 \end{align*}\]

    Vector\(u=\dfrac{5}{13}i+\dfrac{12}{13}j\) ni vector kitengo katika mwelekeo sawa na\(v=⟨−5,12⟩\).

    Kufanya Operesheni na Vectors katika Masharti\(i\) na\(j\)

    Hadi sasa, tumechunguza misingi ya wadudu: ukubwa na mwelekeo, kuongeza vector na kuondoa, kuzidisha scalar, vipengele vya wadudu, na uwakilishi wa wadudu kijiometri. Sasa kwa kuwa tunajua na mikakati ya jumla inayotumiwa katika kufanya kazi na wadudu, tutawakilisha vectors katika kuratibu mstatili kulingana\(i\) na na\(j\).

    VECTORS KATIKA NDEGE YA MSTATILI

    Kutokana vector\(\vec{v}\) na hatua ya awali\(P=(x_1,y_1)\) na hatua terminal\(Q=(x_2,y_2)\),\(\vec{v}\) imeandikwa kama

    \[v=(x_2−x_1)i+(y_1−y_2)j\]

    msimamo vector kutoka\((0,0)\) kwa\((a,b)\), wapi\((x_2−x_1)=a\) na\((y_2−y_1)=b\), imeandikwa kama\(\vec{v} = \vec{ai}+ \vec{bj}\). Jumla hii ya vector inaitwa mchanganyiko wa mstari wa vectors\(\vec{i}\) na\(\vec{j}\).

    Ukubwa wa\(\vec{v} = \overrightarrow{ai} + \overrightarrow{bj}\) hutolewa kama\(| v |=\sqrt{a^2+b^2}\). Angalia Kielelezo\(\PageIndex{17}\).

    Plot kuonyesha wadudu katika kuratibu mstatili katika suala la i na j. nafasi vector v (katika machungwa) inaenea kutoka asili kwa uhakika fulani (a, b) katika Q1. Vipengele vya usawa (ai) na wima (bj) vinaonyeshwa.

    Kielelezo\(\PageIndex{17}\)

    Mfano\(\PageIndex{8A}\): Writing a Vector in Terms of \(i\) and \(j\)

    Kutokana na vector\(\vec{v}\) na hatua ya awali\(P=(2,−6)\) na hatua ya mwisho\(Q=(−6,6)\), andika vector kwa suala la\(\vec{i}\) na\(\vec{j}\).

    Suluhisho

    Anza kwa kuandika fomu ya jumla ya vector. Kisha kuchukua nafasi ya kuratibu na maadili yaliyotolewa.

    \[\begin{align*} v &= (x_2−x_1)i+(y_2−y_1)j \\[4pt] &=(−6−2)i+(6−(−6))j \\[4pt] &= −8i+12j \end{align*}\]

    Mfano\(\PageIndex{8B}\): Writing a Vector in Terms of \(i\) and \(j\) Using Initial and Terminal Points

    Kutokana\(P_1=(−1,3)\) na hatua ya awali na hatua ya mwisho\(P_2=(2,7)\), andika vector\(\vec{v}\) kwa suala la\(\vec{i}\) na\(\vec{j}\).

    Suluhisho

    Anza kwa kuandika fomu ya jumla ya vector. Kisha kuchukua nafasi ya kuratibu na maadili yaliyotolewa.

    \[\begin{align*} v &= (x_2−x_1)i+(y_2−y_1)j \\[4pt] v &= (2−(−1))i+(7−3)j \\[4pt] &= 3i+4j \end{align*}\]

    Zoezi\(\PageIndex{3}\)

    Andika vector\(\vec{u}\) na hatua ya awali\(P=(−1,6)\) na hatua ya mwisho\(Q=(7,−5)\) kwa mujibu wa\(\vec{i}\) na\(\vec{j}\).

    Jibu

    \(u=8i−11j\)

    Kufanya Operesheni ya Vectors katika Masharti\(i\) na\(j\)

    Wakati vectors imeandikwa kwa suala la\(i\) na\(j\), tunaweza kufanya kuongeza, kuondoa, na kuzidisha scalar kwa kufanya shughuli kwenye vipengele vinavyolingana.

    KUONGEZA NA KUONDOA VECTORS KATIKA KURATIBU MSTATILI

    Kutokana\(v = ai + bj\) na\(u = ci + dj\), basi

    \[\begin{align*} v+u &= (a+c)i+(b+d)j \\[4pt] v−u &= (a−c)i+(b−d)j \end{align*}\]

    Mfano\(\PageIndex{9}\): Finding the Sum of the Vectors

    Kupata jumla ya\(v_1=2i−3j\) na\(v_2=4i+5j\).

    Suluhisho

    \[\begin{align*} v_1+v_2 &= (2+4)i+(−3+5)j \\[4pt] &= 6i+2j \end{align*}\]

    Kuhesabu Fomu ya Kipengele cha Vector: Mwelekeo

    Tumeona jinsi ya kuteka wadudu kulingana na pointi zao za awali na za mwisho na jinsi ya kupata vector nafasi. Sisi pia kuchunguza nukuu kwa wadudu inayotolewa hasa katika Cartesian kuratibu ndege kwa kutumia\(i\) na\(j\). Kwa yoyote ya wadudu hawa, tunaweza kuhesabu ukubwa. Sasa, tunataka kuchanganya pointi muhimu, na kuangalia zaidi katika mawazo ya ukubwa na mwelekeo.

    Kuhesabu mwelekeo ifuatavyo mchakato huo wa moja kwa moja tulitumia kwa kuratibu polar. Tunapata mwelekeo wa vector kwa kutafuta angle kwa usawa. Tunafanya hivyo kwa kutumia utambulisho wa msingi wa trigonometric, lakini kwa\(| v |\) kuchukua nafasi\(r\).

    VIPENGELE VYA VECTOR KWA SUALA LA UKUBWA NA M

    Kutokana na vector nafasi\(v=⟨x,y⟩\) na angle mwelekeo\(\theta\),

    \[ \begin{align*} \cos \theta &= \dfrac{x}{|v|} \text{ and } \sin \theta=y|v| \\[4pt] x &= |v| \cos \theta \\[4pt] y &= |v| \sin \theta \end{align*}\]

    Hivyo,\(v=xi+yj=| v | \cos \theta i+| v | \sin \theta j\), na ukubwa unaonyeshwa kama\(| v |=\sqrt{x^2+y^2}\).

    Mfano\(\PageIndex{10}\): Writing a Vector in Terms of Magnitude and Direction

    Andika vector kwa urefu kwa\(7\) pembe ya\(135°\) chanya x -axis kwa suala la ukubwa na mwelekeo.

    Suluhisho

    Kutumia formula uongofu\(x=| v | \cos \theta i\) na\(y=| v | \sin \theta j\), tunaona kwamba

    \[ \begin{align*} x &= 7\cos(135°)i \\[4pt] &= −\dfrac{7\sqrt{2}}{2} \\[4pt] y &=7 \sin(135°)j \\[4pt] &= \dfrac{7\sqrt{2}}{2} \end{align*}\]

    Vector hii inaweza kuandikwa kama\(v=7\cos(135°)i+7\sin(135°)j\) au kilichorahisishwa kama

    \(v=−\dfrac{7\sqrt{2}}{2}i+\dfrac{7\sqrt{2}}{2}j\)

    Zoezi\(\PageIndex{4}\)

    Vector husafiri kutoka asili hadi hatua\((3,5)\). Andika vector kwa suala la ukubwa na mwelekeo.

    Jibu

    \(v=\sqrt{34}\cos(59°)i+\sqrt{34}\sin(59°)j\)

    Ukubwa =\(34\)

    \(\theta={\tan}^{−1}\left(\dfrac{5}{3}\right)=59.04°\)

    Kutafuta Bidhaa ya Dot ya Vectors Mbili

    Kama tulivyojadiliwa mapema katika sehemu hiyo, kuzidisha kwa scalar kunahusisha kuzidisha vector kwa scalar, na matokeo ni vector. Kama tulivyoona, kuzidisha vector kwa idadi inaitwa kuzidisha scalar. Ikiwa tunazidisha vector kwa vector, kuna uwezekano mawili: bidhaa ya dot na bidhaa ya msalaba. Sisi tu kuchunguza dot bidhaa hapa; unaweza kukutana bidhaa msalaba katika kozi ya juu zaidi hisabati.

    Bidhaa ya dot ya vectors mbili inahusisha kuzidisha vectors mbili pamoja, na matokeo ni scalar.

    DOT BIDHAA

    Bidhaa ya dot ya vectors mbili\(v=⟨a,b⟩\) na\(u=⟨c,d⟩\) ni jumla ya bidhaa ya vipengele vya usawa na bidhaa ya vipengele vya wima.

    \[v⋅u=ac+bd\]

    Ili kupata angle kati ya vectors mbili, tumia formula hapa chini.

    \[\cos \theta=\dfrac{v}{| v |}⋅\dfrac{u}{| u |}\]

    Mfano\(\PageIndex{11A}\): Finding the Dot Product of Two Vectors

    Kupata dot bidhaa ya\(v=⟨5,12⟩\) na\(u=⟨−3,4⟩\).

    Suluhisho

    Kutumia formula, tuna

    \[\begin{align*} v⋅u &= ⟨5,12⟩⋅⟨−3,4⟩ \\[4pt] &= 5⋅(−3)+12⋅4 \\[4pt] &= −15+48 \\[4pt] &= 33 \end{align*}\]

    Mfano\(\PageIndex{11B}\): Finding the Dot Product of Two Vectors and the Angle between Them

    Kupata dot bidhaa ya\(v_1 = 5i + 2j\) na\(v_2 = 3i + 7j\). Kisha, tafuta angle kati ya vectors mbili.

    Suluhisho

    Kutafuta bidhaa ya dot, tunazidisha vipengele vinavyolingana.

    \[ \begin{align*} v_1⋅v_2 &= ⟨5,2⟩⋅⟨3,7⟩ \\[4pt] &= 5⋅3+2⋅7 \\[4pt] &= 15+14 \\[4pt] &= 29 \end{align*}\]

    Ili kupata angle kati yao, tunatumia formula\(\cos \theta=\dfrac{v}{|v|}⋅\dfrac{u}{|u|}\).

    \[\begin{align*} \dfrac{v}{|v|}\cdot \dfrac{u}{|u|} &= \left \langle \dfrac{5}{\sqrt{29}}+\dfrac{2}{\sqrt{29}} \right \rangle \cdot \left \langle \dfrac{3}{\sqrt{58}}+\dfrac{7}{\sqrt{58}} \right \rangle \\[4pt] &=\dfrac{5}{\sqrt{29}}\cdot \dfrac{3}{\sqrt{58}}+\dfrac{2}{\sqrt{29}}\cdot \dfrac{7}{\sqrt{58}} \\[4pt] &= \dfrac{15}{\sqrt{1682}}+\dfrac{14}{\sqrt{1682}}\\ &=\dfrac{29}{\sqrt{1682}} \\[4pt] &= 0.707107 \\[4pt] {\cos}^{-1}(0.707107) &= 45° \end{align*}\]

    Angalia Kielelezo\(\PageIndex{18}\).

    Plot kuonyesha mbili nafasi wadudu (3,7) na (5,2) na 45 shahada angle kati yao.

    Kielelezo\(\PageIndex{18}\)

    Mfano\(\PageIndex{11C}\): Finding the Angle between Two Vectors

    Pata angle kati\(u=⟨−3,4⟩\) na\(v=⟨5,12⟩\).

    Suluhisho

    Kutumia formula, tuna

    \[\begin{align*} \theta &= {\cos}^{−1}\left(\dfrac{u}{|u|}⋅\dfrac{v}{|v|}\right) \\[4pt] \left(\dfrac{u}{|u|}⋅\dfrac{v}{|v|}\right) &= \dfrac{−3i+4j}{5}⋅\dfrac{5i+12j}{13} \\[4pt] &= \left(− \dfrac{3}{5}⋅ \dfrac{5}{13}\right)+\left(\dfrac{4}{5}⋅ \dfrac{12}{13}\right) \\[4pt] &= −\dfrac{15}{65}+\dfrac{48}{65} \\[4pt] &= \dfrac{33}{65} \\[4pt] \theta &= {\cos}^{−1}\left(\dfrac{33}{65}\right) \\[4pt] &= 59.5^{\circ} \end{align*}\]

    Angalia Kielelezo\(\PageIndex{19}\).

    Plot kuonyesha wadudu nafasi mbili (-3,4) na (5,12) na 59.5 shahada angle kati yao.

    Kielelezo\(\PageIndex{19}\)

    Mfano\(\PageIndex{11D}\): Finding Ground Speed and Bearing Using Vectors

    Sasa tuna zana za kutatua tatizo tuliloletwa katika ufunguzi wa sehemu hiyo.

    ndege ni flying katika airspeed ya\(200\) maili kwa saa inaongozwa juu ya kuzaa SE ya\(140°\). Upepo wa kaskazini (kutoka kaskazini hadi kusini) unapiga\(16.2\) maili kwa saa. Je! Kasi ya ardhi na kuzaa halisi ya ndege ni nini? Angalia Kielelezo\(\PageIndex{20}\).

    Picha ya mpango flying SE nyuzi 140 na upepo kaskazini kupiga.

    Kielelezo\(\PageIndex{20}\)

    Suluhisho

    Kasi ya ardhi\(x\) inawakilishwa na mchoro, na tunahitaji kupata angle\(\alpha\) ili kuhesabu kuzaa kubadilishwa, ambayo itakuwa\(140°+\alpha\).

    Taarifa katika Kielelezo\(\PageIndex{20}\), kwamba angle\(\angle BCO\) lazima kuwa sawa na angle\(\angle AOC\) na utawala wa pembe alternating mambo ya ndani, hivyo angle\(\angle BCO\) ni 140°. Tunaweza kupata\(x\) kwa Sheria ya Cosines:

    \[\begin{align*} x^2 &= {(16.2)}^2+{(200)}^2−2(16.2)(200) \cos(140°) \\[4pt] x^2 &= 45,226.41 \\[4pt] x &= \sqrt{45,226.41} \\[4pt] x &= 212.7 \end{align*}\]

    Kasi ya ardhi ni takriban\(213\) maili kwa saa. Sasa tunaweza kuhesabu kuzaa kwa kutumia Sheria ya Sines.

    \[\begin{align*} \dfrac{\sin \alpha}{16.2} &= \dfrac{\sin(140°)}{212.7} \\[4pt] \sin \alpha &= \dfrac{16.2 \sin(140°)}{212.7} \\[4pt] &=0.04896 \\[4pt] {\sin}^{−1}(0.04896) &= 2.8° \end{align*}\]

    Kwa hiyo, ndege ina SE kuzaa ya\(140°+2.8°=142.8°\). Kasi ya ardhi ni\(212.7\) maili kwa saa.

    Vyombo vya habari: Fikia rasilimali hizi mtandaoni kwa maelekezo ya ziada na mazoezi na wadudu.

    Key Concepts

    • The position vector has its initial point at the origin. See Example \(\PageIndex{1}\).
    • If the position vector is the same for two vectors, they are equal. See Example \(\PageIndex{2}\).
    • Vectors are defined by their magnitude and direction. See Example \(\PageIndex{3}\).
    • If two vectors have the same magnitude and direction, they are equal. See Example \(\PageIndex{4}\).
    • Vector addition and subtraction result in a new vector found by adding or subtracting corresponding elements. See Example \(\PageIndex{5}\).
    • Scalar multiplication is multiplying a vector by a constant. Only the magnitude changes; the direction stays the same. See Example \(\PageIndex{6}\) and Example \(\PageIndex{7}\).
    • Vectors are comprised of two components: the horizontal component along the positive \(x\)-axis, and the vertical component along the positive \(y\)-axis. See Example \(\PageIndex{8}\).
    • The unit vector in the same direction of any nonzero vector is found by dividing the vector by its magnitude.
    • The magnitude of a vector in the rectangular coordinate system is \(| v |=\sqrt{a^2+b^2}\). See Example \(\PageIndex{9}\).
    • In the rectangular coordinate system, unit vectors may be represented in terms of \(ii\) and \(jj\) where \(i\) represents the horizontal component and \(j\) represents the vertical component. Then, \(v = ai + bj\) is a scalar multiple of \(v\) by real numbers \(a\) and \(b\). See Example \(\PageIndex{10}\) and Example \(\PageIndex{11}\).
    • Adding and subtracting vectors in terms of \(i\) and \(j\) consists of adding or subtracting corresponding coefficients of \(i\) and corresponding coefficients of \(j\). See Example \(\PageIndex{12}\).
    • A vector \(v = ai + bj\) is written in terms of magnitude and direction as \(v=| v |\cos \theta i+| v |\sin \theta j\). See Example \(\PageIndex{13}\).
    • The dot product of two vectors is the product of the \(i\) terms plus the product of the \(j\) terms. See Example \(\PageIndex{14}\).
    • We can use the dot product to find the angle between two vectors. Example \(\PageIndex{15}\) and Example \(\PageIndex{16}\).
    • Dot products are useful for many types of physics applications. See Example \(\PageIndex{17}\).

    Contributors and Attributions