Sura ya 11 Mazoezi Mapitio
Sura ya Mapitio ya mazoezi
Umbali na Midpoint Formula; Mizunguko
Katika mazoezi yafuatayo, tafuta umbali kati ya pointi. Pande zote hadi kumi karibu ikiwa inahitajika.
- (−5,1)na(−1,4)
- (−2,5)na(1,5)
- (8,2)na(−7,−3)
- (1,−4)na(5,−5)
- Jibu
-
2. d=3
4. d=√17,d≈4.1
Katika mazoezi yafuatayo, pata midpoint ya makundi ya mstari ambao mwisho wake hutolewa.
- (−2,−6)na(−4,−2)
- (3,7)na(5,1)
- (−8,−10)na(9,5)
- (−3,2)na(6,−9)
- Jibu
-
2. (4,4)
4. (32,−72)
Katika mazoezi yafuatayo, weka fomu ya kawaida ya equation ya mduara na habari iliyotolewa.
- Radius ni15 na kituo cha(0,0)
- Radius ni√7 na kituo cha(0,0)
- Radius ni9 na kituo cha(−3,5)
- Radius ni7 na kituo cha(−2,−5)
- kituo ni(3,6) na uhakika juu ya mduara ni(3,−2)
- kituo ni(2,2) na uhakika juu ya mduara ni(4,4)
- Jibu
-
2. x2+y2=7
4. (x+2)2+(y+5)2=49
6. (x−2)2+(y−2)2=8
Katika mazoezi yafuatayo,
- Pata kituo na radius, basi
- Grafu kila mduara.
- 2x2+2y2=450
- 3x2+3y2=432
- (x+3)2+(y−5)2=81
- (x+2)2+(y+5)2=49
- x2+y2−6x−12y−19=0
- x2+y2−4y−60=0
- Jibu
-
2.
- radius:12, kituo cha:(0,0)
Kielelezo 11.E.1 4.
- radius:7, kituo cha:(−2,−5)
Kielelezo 11.E.2 6.
- radius:8, kituo cha:(0,2)
Kielelezo 11.E.3
Parabola
Katika mazoezi yafuatayo, grafu kila equation kwa kutumia mali zake.
- y=x2+4x−3
- y=2x2+10x+7
- y=−6x2+12x−1
- y=−x2+10x
- Jibu
-
2.
Kielelezo 11.E.4 4.
Kielelezo 11.E.5
Katika mazoezi yafuatayo,
- Andika equation katika fomu ya kawaida, basi
- Tumia mali ya fomu ya kawaida ili graph equation.
- y=x2+4x+7
- y=2x2−4x−2
- y=−3x2−18x−29
- y=−x2+12x−35
- Jibu
-
2.
- y=2(x−1)2−4
Kielelezo 11.E.6 4.
- y=−(x−6)2+1
Kielelezo 11.E.7
Katika mazoezi yafuatayo, grafu kila equation kwa kutumia mali zake.
- x=2y2
- x=2y2+4y+6
- x=−y2+2y−4
- x=−3y2
- Jibu
-
2.
Kielelezo 11.E.8 4.
Kielelezo 11.E.9
Katika mazoezi yafuatayo,
- Andika equation katika fomu ya kawaida, basi
- Tumia mali ya fomu ya kawaida ili graph equation.
- x=4y2+8y
- x=y2+4y+5
- x=−y2−6y−7
- x=−2y2+4y
- Jibu
-
2.
- x=(y+2)2+1
Kielelezo 11.E.10 4.
- x=−2(y−1)2+2
Kielelezo 11.E.11
Katika mazoezi yafuatayo, tengeneza equation ya upinde wa parabolic uliofanywa katika msingi wa daraja iliyoonyeshwa. Kutoa jibu kwa fomu ya kawaida.
1.

2.

- Jibu
-
2. y=−19x2+103x
duaradufu
Katika mazoezi yafuatayo, grafu kila duaradufu.
- x236+y225=1
- x24+y281=1
- 49x2+64y2=3136
- 9x2+y2=9
- Jibu
-
2.
Kielelezo 11.E.14 4.
Kielelezo 11.E.15
Katika mazoezi yafuatayo, pata equation ya ellipse iliyoonyeshwa kwenye grafu.
1.

2.

- Jibu
-
2. x236+y264=1
Katika mazoezi yafuatayo, grafu kila duaradufu.
- (x−1)225+(y−6)24=1
- (x+4)216+(y+1)29=1
- (x−5)216+(y+3)236=1
- (x+3)29+(y−2)225=1
- Jibu
-
2.
Kielelezo 11.E.18 4.
Kielelezo 11.E.19
Katika mazoezi yafuatayo,
- Andika equation katika fomu ya kawaida na
- Grafu.
- x2+y2+12x+40y+120=0
- 25x2+4y2−150x−56y+321=0
- 25x2+4y2+150x+125=0
- 4x2+9y2−126x+405=0
- Jibu
-
2.
- (x−3)24+(y−7)225=1
Kielelezo 11.E.20 4.
- x29+(y−7)24=1
Kielelezo 11.E.21
Katika mazoezi yafuatayo, andika equation ya ellipse ilivyoelezwa.
- Comet huenda katika obiti ya elliptical karibu na jua. Karibu zaidi kimondo kinapata jua ni takriban10 AU na mbali zaidi ni takriban90 AU. Jua ni moja ya foci ya obiti ya elliptical. Kuruhusu kituo cha ellipse katika asili na kuandika axes katika AU, obiti itaonekana kama takwimu hapa chini. Tumia grafu kuandika equation kwa obiti elliptical ya comet.

- Jibu
-
1. Kutatua
Hyperbolas
Katika mazoezi yafuatayo, grafu.
- x225−y29=1
- y249−x216=1
- 9y2−16x2=144
- 16x2−4y2=64
- Jibu
-
1.
Kielelezo 11.E.23 3.
Kielelezo 11.E.24
Katika mazoezi yafuatayo, grafu.
- (x+1)24−(y+1)29=1
- (x−2)24−(y−3)216=1
- (y+2)29−(x+1)29=1
- (y−1)225−(x−2)29=1
- Jibu
-
1.
Kielelezo 11.E.25 3.
Kielelezo 11.E.26
Katika mazoezi yafuatayo,
- Andika equation katika fomu ya kawaida na
- Grafu.
- 4x2−16y2+8x+96y−204=0
- 16x2−4y2−64x−24y−36=0
- 4y2−16x2+32x−8y−76=0
- 36y2−16x2−96x+216y−396=0
- Jibu
-
1.
- (x+1)216−(y−3)24=1
Kielelezo 11.E.27 3.
- (y−1)216−(x−1)24=1
Kielelezo 11.E.28
Katika mazoezi yafuatayo, tambua aina ya grafu.
-
- 16y2−9x2−36x−96y−36=0
- x2+y2−4x+10y−7=0
- y=x2−2x+3
- 25x2+9y2=225
-
- x2+y2+4x−10y+25=0
- y2−x2−4y+2x−6=0
- x=−y2−2y+3
- 16x2+9y2=144
- Jibu
-
1.
- Hyperbola
- Circle
- Parabola
- duaradufu
Kutatua Mifumo ya Equations Nonlinear
Katika mazoezi yafuatayo, tatua mfumo wa equations kwa kutumia graphing.
- {3x2−y=0y=2x−1
- {y=x2−4y=x−4
- {x2+y2=169x=12
- {x2+y2=25y=−5
- Jibu
-
1.
Kielelezo 11.E.29 3.
Kielelezo 11.E.30
Katika mazoezi yafuatayo, tatua mfumo wa equations kwa kutumia badala.
- {y=x2+3y=−2x+2
- {x2+y2=4x−y=4
- {9x2+4y2=36y−x=5
- {x2+4y2=42x−y=1
- Jibu
-
1. (−1,4)
3. Hakuna ufumbuzi
Katika mazoezi yafuatayo, tatua mfumo wa equations kwa kutumia kuondoa.
- {x2+y2=16x2−2y−1=0
- {x2−y2=5−2x2−3y2=−30
- {4x2+9y2=363y2−4x=12
- {x2+y2=14x2−y2=16
- Jibu
-
1. (−√7,3),(√7,3)
3. (−3,0),(0,−2),(0,2)
Katika mazoezi yafuatayo, tatua tatizo kwa kutumia mfumo wa equations.
- Jumla ya mraba ya namba mbili ni25. Tofauti ya idadi ni1. Kupata idadi.
- Tofauti ya mraba wa namba mbili ni45. Tofauti ya mraba wa namba ya kwanza na mara mbili mraba wa namba ya pili ni9. Kupata idadi.
- Mzunguko wa mstatili ni58 mita na eneo lake ni mita za210 mraba. Pata urefu na upana wa mstatili.
- Colton alinunua microwave kubwa kwa jikoni yake. Ulalo wa mbele wa microwave hupima34 inchi. Mbele pia ina eneo la inchi za480 mraba. Urefu na upana wa microwave ni nini?
- Jibu
-
1. −3na−4 au4 na3
3. Ikiwa urefu ni14 inchi, upana ni15 inchi. Ikiwa urefu ni15 inchi, upana ni14 inchi.
Mazoezi mtihani
Katika mazoezi yafuatayo, tafuta umbali kati ya pointi na katikati ya sehemu ya mstari na mwisho uliopewa. Pande zote hadi kumi karibu kama inahitajika.
- (−4,−3)na(−10,−11)
- (6,8)na(−5,−3)
- Jibu
-
1. umbali:10, midpoint:(−7,−7)
Katika mazoezi yafuatayo, weka fomu ya kawaida ya equation ya mduara na habari iliyotolewa.
- Radius ni11 na kituo cha(0,0)
- Radius ni12 na kituo cha(10,−2)
- kituo ni(−2,3) na uhakika juu ya mduara ni(2,−3)
- Kupata equation ya duaradufu inavyoonekana katika grafu.

- Jibu
-
1. x2+y2=121
3. (x+2)2+(y−3)2=52
Katika mazoezi yafuatayo,
- Kutambua aina ya grafu ya kila equation kama mduara, parabola, duaradufu, au hyperbola, na
- Grafu equation.
- 4x2+49y2=196
- y=3(x−2)2−2
- 3x2+3y2=27
- y2100−x236=1
- x216+y281=1
- x=2y2+10y+7
- 64x2−9y2=576
- Jibu
-
1.
- duaradufu
Kielelezo 11.E.32 3.
- Circle
Kielelezo 11.E.33 5.
- duaradufu
Kielelezo 11.E.34 7.
- Hyperbola
Kielelezo 11.E.35
Katika mazoezi yafuatayo,
- Tambua aina ya grafu ya kila equation kama mduara, parabola, duaradufu, au hyperbola,
- Andika equation katika fomu ya kawaida, na
- Grafu equation.
- 25x2+64y2+200x−256y−944=0
- x2+y2+10x+6y+30=0
- x=−y2+2y−4
- 9x2−25y2−36x−50y−214=0
- y=x2+6x+8
- Tatua mfumo usio wa kawaida wa equations kwa kuchora:{3y2−x=0y=−2x−1.
- Tatua mfumo usio wa kawaida wa equations kwa kutumia mbadala:{x2+y2=8y=−x−4.
- Tatua mfumo usio wa kawaida wa equations kwa kutumia kuondoa:{x2+9y2=92x2−9y2=18
- Kujenga equation ya upinde parabolic sumu katika msingi wa daraja inavyoonekana. Kutoa jibu kway=ax2+bx+c fomu.

10. Comet huenda katika obiti ya elliptical karibu na jua. Karibu zaidi kimondo kinapata jua ni takriban20 AU na mbali zaidi ni takriban70 AU. Jua ni moja ya foci ya obiti ya elliptical. Kuruhusu kituo cha ellipse katika asili na kuandika axes katika AU, obiti itaonekana kama takwimu hapa chini. Tumia grafu kuandika equation kwa obiti elliptical ya comet.

11. Jumla ya namba mbili ni22 na bidhaa ni−240. Kupata idadi.
12. Kwa siku yake ya kuzaliwa, babu na babu za Olive walinunua TV mpya ya widescreen. Kabla ya kufungua yeye anataka kuhakikisha kuwa inafaa kituo chake cha burudani. TV ni55”. Ukubwa wa TV hupimwa kwenye diagonal ya skrini na widescreen ina urefu ambao ni mkubwa kuliko upana. Skrini pia ina eneo la inchi za1452 mraba. Kituo chake cha burudani kina kuingiza kwa TV yenye urefu wa50 inchi na upana wa40 inchi. Urefu na upana wa skrini ya TV ni nini na itafaa kituo cha burudani cha Olive?
- Jibu
-
2.
- Circle
- (x+5)2+(y+3)2=4
Kielelezo 11.E.38 4.
- Hyperbola
- (x−2)225−(y+1)29=1
Kielelezo 11.E.39 6. Hakuna ufumbuzi
8. (0,−3),(0,3)
10. x22025+y21400=1
12. Urefu ni44 inchi na upana ni33 inchi. TV itafaa kituo cha burudani cha Olive.
faharasa
- mfumo wa equations isiyo ya kawaida
- Mfumo wa milinganyo isiyo ya kawaida ni mfumo ambapo angalau moja ya equations si linear.