Skip to main content
Global

7.5 : Déterminer le champ à partir du potentiel

  • Page ID
    191259
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Objectifs d'apprentissage

    À la fin de cette section, vous serez en mesure de :

    • Expliquer comment calculer le champ électrique dans un système à partir du potentiel donné
    • Calculez le champ électrique dans une direction donnée à partir d'un potentiel donné
    • Calculez le champ électrique dans l'espace à partir d'un potentiel donné

    Rappelons que nous avons pu, dans certains systèmes, calculer le potentiel en l'intégrant sur le champ électrique. Comme vous vous en doutez peut-être déjà, cela signifie que nous pouvons calculer le champ électrique en prenant des dérivées du potentiel, bien que le passage d'une quantité scalaire à une quantité vectorielle introduise des rides intéressantes. Nous avons souvent besoin de\(\vec{E}\) calculer la force dans un système ; comme il est souvent plus simple de calculer directement le potentiel, il existe des systèmes dans lesquels il est utile de calculer V puis de le\(\vec{E}\) déduire.

    En général, que le champ électrique soit uniforme ou non, il pointe dans la direction du potentiel décroissant, car la force sur une charge positive est dans la direction\(\vec{E}\) et également dans la direction du potentiel inférieur V. De plus, l'amplitude de\(\vec{E}\) est égale au taux de diminution de V avec la distance. Plus V diminue rapidement sur la distance, plus le champ électrique est important. Cela nous donne le résultat suivant.

    Relation entre la tension et le champ électrique uniforme

    Sous forme d'équation, la relation entre la tension et le champ électrique uniforme est

    \[E = - \dfrac{\Delta V}{\Delta s}\]

    \(\Delta s\) est la distance sur laquelle\(\Delta V\) se produit le changement de potentiel. Le signe moins nous indique que cela\(E\) indique la direction du potentiel décroissant. Le champ électrique est dit être le gradient (comme en pente ou en pente) du potentiel électrique.

    La figure montre la composante du champ électrique de deux points A et B séparés par une distance delta s et ayant une différence de potentiel de delta V.
    Figurine\(\PageIndex{1}\): The electric field component along the displacement \(\Delta s\) is given by \(E = - \dfrac{\Delta V}{\Delta s}\). Note that A and B are assumed to be so close together that the field is constant along \(\Delta s\).

    For continually changing potentials, \(\Delta V\) and \(\Delta s\) become infinitesimals, and we need differential calculus to determine the electric field. As shown in Figure \(\PageIndex{1}\), if we treat the distance \(\Delta s\) as very small so that the electric field is essentially constant over it, we find that

    \[E_s = - \dfrac{dV}{ds}.\]

    Therefore, the electric field components in the Cartesian directions are given by

    \[E_x = - \dfrac{\partial V}{\partial x}, \, E_y = - \dfrac{\partial V}{\partial y}, \, E_z = - \dfrac{\partial V}{\partial z}.\]

    This allows us to define the “grad” or “del” vector operator, which allows us to compute the gradient in one step. In Cartesian coordinates, it takes the form

    \[\vec{\nabla} = \hat{i} \dfrac{\partial}{\partial x} + \hat{j} \dfrac{\partial}{\partial y} + \hat{k} \dfrac{\partial}{\partial z}.\]

    With this notation, we can calculate the electric field from the potential with

    \[\vec{E} = - \vec{\nabla}V, \label{eq20}\]

    a process we call calculating the gradient of the potential.

    If we have a system with either cylindrical or spherical symmetry, we only need to use the del operator in the appropriate coordinates:

    \[\begin{align} \vec{\nabla}_{cyl} &= \underbrace{\hat{r} \dfrac{\partial}{\partial r} + \hat{\varphi}\dfrac{1}{r} \dfrac{\partial}{\partial \varphi} + \hat{z} \dfrac{\partial}{\partial z}}_{\text{Cylindrical}} \label{cylindricalnabla} \\[4pt] \vec{\nabla}_{sph} &= \underbrace{ \hat{r} \dfrac{\partial}{\partial r} + \hat{\theta}\dfrac{1}{r} \dfrac{\partial}{\partial \theta} + \hat{\varphi} \dfrac{1}{r \, sin \, \theta}\dfrac{\partial}{\partial \varphi}}_{\text{Spherical}} \label{spherenabla} \end{align}\]

    Example \(\PageIndex{1}\): Electric Field of a Point Charge

    Calculate the electric field of a point charge from the potential.

    Strategy

    The potential is known to be \(V = k\dfrac{q}{r}\), which has a spherical symmetry. Therefore, we use the spherical del operator (Equation \ref{spherenabla}) into Equation \ref{eq20}:

    \[\vec{E} = - \vec{\nabla}_{sph} V \nonumber.\]

    Solution

    Performing this calculation gives us

    \[\begin{align*} \vec{E} &= - \left( \hat{r}\dfrac{\partial}{\partial r} + \hat{\theta}\dfrac{1}{r} \dfrac{\partial}{\partial \theta} + \hat{\varphi}\dfrac{1}{1 \, \sin \, \theta} \dfrac{\partial}{\partial \varphi}\right) k\dfrac{q}{r} \\[4pt] &= - k\left( \hat{r}\dfrac{\partial}{\partial r}\dfrac{1}{r} + \hat{\theta}\dfrac{1}{r} \dfrac{\partial}{\partial \theta}\dfrac{1}{r} + \hat{\varphi}\dfrac{1}{1 \, \sin \, \theta} \dfrac{\partial}{\partial \varphi}\dfrac{1}{r}\right).\end{align*}\]

    This equation simplifies to

    \[\vec{E} = - kq\left(\hat{r}\dfrac{-1}{r^2} + \hat{\theta}0 + \hat{\varphi}0 \right) = k\dfrac{q}{r^2}\hat{r} \nonumber\]

    as expected.

    Significance

    We not only obtained the equation for the electric field of a point particle that we’ve seen before, we also have a demonstration that \(\vec{E}\) points in the direction of decreasing potential, as shown in Figure \(\PageIndex{2}\).

    The figure shows a charge Q and radially outward electric field vectors from Q.
    Figure \(\PageIndex{2}\): Electric field vectors inside and outside a uniformly charged sphere.
    Example \(\PageIndex{2}\): Electric Field of a Ring of Charge

    Use the potential found previously to calculate the electric field along the axis of a ring of charge (Figure \(\PageIndex{3}\)).

    The figure shows a ring of charge located on the xy-plane with its center at the origin. Point P is located on the z-axis at distance z away from the origin.
    Figure \(\PageIndex{3}\): We want to calculate the electric field from the electric potential due to a ring charge.

    Strategy

    In this case, we are only interested in one dimension, the z-axis. Therefore, we use

    \[E_z = - \dfrac{\partial V}{\partial z} \nonumber\]

    with the potential

    \[V = k \dfrac{q_{tot}}{\sqrt{z^2 + R^2}} \nonumber\]

    found previously.

    Solution

    Taking the derivative of the potential yields

    \[ \begin{align*} E_z &= - \dfrac{\partial}{\partial z} \dfrac{kq_{tot}}{\sqrt{z^2 + R^2}} \\[4pt] &= k \dfrac{q_{tot}z}{(z^2 + R^2)^{3/2}}. \end{align*}\]

    Significance

    Again, this matches the equation for the electric field found previously. It also demonstrates a system in which using the full del operator is not necessary.

    Exercise \(\PageIndex{1}\)

    Which coordinate system would you use to calculate the electric field of a dipole?

    Answer

    Any, but cylindrical is closest to the symmetry of a dipole.