5.4: 章节公式回顾
- Page ID
- 204879
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)
5.1 连续概率密度函数的属性
概率密度函数 (pdf)\(f(x)\):
- 累积分布函数 (cdf):\(P(X \leq x)\)
5.2 均匀分布
\(X \sim U (a, b)\)
平均值是\(\mu=\frac{a+b}{2}\)
标准差为\(\sigma=\sqrt{\frac{(b-a)^{2}}{12}}\)
概率密度函数:\(f(x)=\frac{1}{b-a} \text { for } a \leq X \leq b\)
左侧区域\(\bf{x}\):\(P(X<x)>
\ (\ bf {x}\) 右侧的区域:\(P(X>x)=(b-x)\left(\frac{1}{b-a}\right)\)
介于\(\bf{c}\)和之间的区域\(\bf{d}\):\(P(c
<d)> 5.3 指数分布
- pdf:\ (f (x) = me^ {(—mx)}\) where\(x \geq 0\) and\(m > 0\)
- cdf:\(P(X \leq x) = 1 – e^{(–mx)}\)
- 意思\(\mu = \frac{1}{m}\)
- 标准差\(\sigma = \mu\)
- 此外
- \(P(X > x) = e^{(–mx)}\)
- \(P(a < X < b) = e^{(–ma)} – e^{(–mb)}\)
- 泊松概率:\(P(X=x)=\frac{\mu^{x} e^{-\mu}}{x !}\)均值和方差为\(\mu\)