Skip to main content
Global

2.4: أمثلة تطبيقية

  • Page ID
    166999
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    في هذا القسم، قم بتطبيق صيغة المسافة\(d = \sqrt{(x_2 − x_1) ^2 + (y_2 − y_1) ^2}\) للعثور على أطوال المقاطع المستقيمة.

    ملاحظة: ثلاث نقاط\(A\)\(B\)،\(C\) وهي متوازية، أو بعبارة أخرى، تقع النقاط الثلاث على نفس الخط، إذا كان مجموع أطوال أي مقطعين سطريين يربطان النقاط، يساوي طول مقطع الخط المتبقي. هذا هو،\(AB + BC = AC\) أو،\(AB + BC = AC\) أو،\(AB + AC = BC\) أو\(AC + BC = AB\).

    مثال
    ParseError: invalid ArgList (click for details)
    Callstack:
        at (اللغة_العربية/(__)/02:_نظام_الإحداثيات_الديكارتية/2.04:_أمثلة_تطبيقية), /content/body/section[1]/header/div/h5/span/span, line 1, column 17
    

    حدِّد ما إذا كانت النقاط الثلاث المُعطاة متوازية.

    \(A(10, −4)\quad B(8, −2) \quad C(2, 4)\)

    الحل

    ابحث أولاً عن الشرائح\(AB\),\(BC\), و\(AC\). للقيام بذلك، ابحث عن المسافة بين النقاط\(A\) و\(B\)،\(B\) و\(C\)،\(A\) و\(C\).

    \(\begin{aligned} \text{Segment AB }&=\text{ The distance between point A and Point B } \\ &= \sqrt{(8 − 10)^2 + [−2 − (−4)]^2} \\ &= \sqrt{(−2)^2 + (2)^2} \\&= \sqrt{ 8}\\&= 2\sqrt{2} \end{aligned}\)

    \(\begin{aligned} \text{Segment BC }&=\text{ The distance between point B and Point C } \\ &= \sqrt{(2 − 8)^2 + [4 − (−2)]^2 }\\ &= \sqrt{(−6)^2 + (6)^2} \\&= \sqrt{ 72 }\\&= 6\sqrt{ 2}\end{aligned}\)

    \(\begin{aligned} \text{Segment AC }&=\text{ The distance between point A and Point C }\\&= \sqrt{(2 − 10)^2 + [4 − (−4)]^2} \\&= \sqrt{(−8)^2 + (8)^2 }\\&= \sqrt{ 128 }\\&= 8\sqrt{ 2}\end{aligned}\)

    وهكذا،

    \(\begin{aligned} AB + BC &= 2\sqrt{ 2} + 6\sqrt{ 2 }\\&= 8\sqrt{ 2 } \\&= AC \end{aligned}\)

    منذ ذلك\(AB + BC = AC\) الحين، تكون ثلاث نقاط متوازية.

    التمرين
    ParseError: invalid ArgList (click for details)
    Callstack:
        at (اللغة_العربية/(__)/02:_نظام_الإحداثيات_الديكارتية/2.04:_أمثلة_تطبيقية), /content/body/section[2]/header/div/h5/span/span, line 1, column 17
    
    1. حدِّد ما إذا كانت النقاط التالية منسجمة.
      1. \(A(4,-1)\quad B(5,-2) \quad C(1,2)\)
      2. \(A(2,-2)\quad B(3,1)\quad C(2,1)\)