10.7: Gawanya Monomials (Sehemu ya 2)
Kurahisisha Maneno kwa kutumia Mali kadhaa
Tutaweza sasa muhtasari mali yote ya exponents hivyo wote ni pamoja kwa kutaja kama sisi kurahisisha maneno kwa kutumia mali kadhaa. Kumbuka kwamba wao ni sasa defined kwa exponents idadi nzima.
Ikiwa, b ni namba halisi na m, n ni namba nzima, basi
Bidhaa Mali | am•an=am+n |
Power Mali | (am)n=am•n |
Bidhaa kwa Mali ya Nguvu | (ab)m=ambm |
Mali ya Quotient | aman=am−n,a≠0,m>n |
aman=1an−m,a≠0,n>m | |
Zero Exponent Mali | a0=1,a≠0 |
Quotient kwa Mali Nguvu | (ab)m=ambm,b≠0 |
Kurahisisha:(x2)3x5.
Suluhisho
Panua vielelezo katika nambari, kwa kutumia Mali ya Nguvu. | x6x5 |
Ondoa exponents. | x |
Kurahisisha:(a4)5a9.
- Jibu
-
a11
Kurahisisha:(b5)6b11.
- Jibu
-
b19
Kurahisisha:(m8)(m2)4.
Suluhisho
Panua vielelezo katika nambari, kwa kutumia Mali ya Nguvu. | m8m8 |
Ondoa exponents. | m0 |
Zero nguvu mali | 1 |
Kurahisisha:(k11(k3)3.
- Jibu
-
k2
Kurahisisha:(d23(d4)6.
- Jibu
-
1d
Kurahisisha:(x7x3)2.
Suluhisho
Kumbuka mabano kuja kabla exponents, na besi ni sawa ili tuweze kurahisisha ndani ya mabano. Ondoa exponents. | (x7−3)2 |
Kurahisisha. | (x4)2 |
Kuzidisha exponents. | x8 |
Kurahisisha:(f14f8)2.
- Jibu
-
f12
Kurahisisha:(b6b11)2.
- Jibu
-
1b10
Kurahisisha:(p2q5)3.
Suluhisho
Hapa hatuwezi kurahisisha ndani ya mabano kwanza, kwani misingi si sawa.
Kuongeza nambari na denominator kwa nguvu ya tatu kwa kutumia Quotient kwa Mali Power,(ab)m=ambm | (p2)3(q5)3 |
Tumia Mali ya Nguvu, (m) n = m • n. | p6q15 |
Kurahisisha:(m3n8)5.
- Jibu
-
m15n40
Kurahisisha:(t10u7)2.
- Jibu
-
t20u14
Kurahisisha:(2x33y)4.
Suluhisho
Kuongeza nambari na denominator kwa nguvu ya nne kwa kutumia Quotient kwa Power Mali. | (2x3)4(3y)4 |
Kuongeza kila sababu kwa nguvu ya nne, kwa kutumia Nguvu ya Mali ya Nguvu. | 24(x3)434y4 |
Matumizi Power Mali na kurahisisha. | 16x1281y4 |
Kurahisisha:(5b9c3)2.
- Jibu
-
25b281c6
Kurahisisha:(4p47q5)3.
- Jibu
-
64p12343q15
Kurahisisha:(y2)3(y2)4(y5)4.
Suluhisho
Tumia Mali ya Nguvu. | (y6)(y8)y20 |
Ongeza vielelezo katika nambari, kwa kutumia Mali ya Bidhaa. | y14y20 |
Tumia Mali ya Quotient. | 1y6 |
Kurahisisha:(y4)4(y3)5(y7)6.
- Jibu
-
1y11
Kurahisisha:(3x4)2(x3)4(x5)3.
- Jibu
-
9x5
Kugawanya Monomials
Sasa tumeona mali yote ya exponents. Tutatumia kugawanya monomials. Baadaye, utazitumia kugawanya polynomials.
Pata quotient: 56x 5 ÷ 7x 2.
Suluhisho
Andika upya kama sehemu. | 56x57x2 |
Tumia kuzidisha sehemu ili kutenganisha sehemu ya nambari kutoka sehemu ya kutofautiana. | 567⋅x5x2 |
Tumia Mali ya Quotient. | 8x3 |
Pata quotient: 63x 8 ÷ 9x 4.
- Jibu
-
7x4
Pata quotient: 96y 11 ÷ 6y 8.
- Jibu
-
16y3
Tunapogawanya monomials na variable zaidi ya moja, tunaandika sehemu moja kwa kila kutofautiana.
Kupata quotient:42x2y3−7xy5.
Suluhisho
Tumia kuzidisha sehemu. | 42−7⋅x2x⋅y3y5 |
Kurahisisha na kutumia Quotient Mali. | −6⋅x⋅1y2 |
Kuzidisha. | −6xy2 |
Kupata quotient:−84x8y37x10y2.
- Jibu
-
−12yx2
Kupata quotient:−72a4b5−8a9b5.
- Jibu
-
9a5
Kupata quotient:24a5b348ab4.
Suluhisho
Tumia kuzidisha sehemu. | 2448⋅a5a⋅b3b4 |
Kurahisisha na kutumia Quotient Mali. | 12⋅a4⋅1b |
Kuzidisha. | a42b |
Kupata quotient:16a7b624ab8.
- Jibu
-
2a63b2
Kupata quotient:27p4q7−45p12q.
- Jibu
-
−3q65p8
Mara baada ya kuwa ukoo na mchakato na umeifanya hatua kwa hatua mara kadhaa, unaweza kuwa na uwezo wa kurahisisha sehemu katika hatua moja.
Kupata quotient:14x7y1221x11y6.
Suluhisho
Kurahisisha na kutumia Quotient Mali. | 2y63x4 |
Kuwa makini sana kurahisisha1421 kwa kugawa nje sababu ya kawaida, na kurahisisha vigezo kwa kutoa exponents yao.
Kupata quotient:28x5y1449x9y12.
- Jibu
-
4y27x4
Kupata quotient:30m5n1148m10n14.
- Jibu
-
58m5n3
Katika mifano yote hadi sasa, hapakuwa na kazi ya kufanya katika nambari au denominator kabla ya kurahisisha sehemu. Katika mfano unaofuata, tutapata kwanza bidhaa za monomials mbili katika nambari kabla ya kurahisisha sehemu.
Kupata quotient:(3x3y2)(10x2y3)6x4y5.
Suluhisho
Kumbuka, bar ya sehemu ni ishara ya makundi. Sisi kurahisisha nambari ya kwanza.
Kurahisisha nambari. | 30x5y56x4y5 |
Kurahisisha, kwa kutumia Utawala wa Quotient. | 5x |
Kupata quotient:(3x4y5)(8x2y5)12x5y8.
- Jibu
-
2xy2
Kupata quotient:(−6a6b9)(−8a5b8)−12a10b12.
- Jibu
-
−4ab5
Mazoezi hufanya kamili
Kurahisisha Maneno Kutumia Mali ya Quotient ya Watazamaji
Katika mazoezi yafuatayo, kurahisisha.
- 4842
- 31234
- x12x3
- u9u3
- r5r
- y4y
- y4y20
- x10x30
- 1031015
- r2r8
- aa9
- 225
Kurahisisha Maneno na Zero Exponents
Katika mazoezi yafuatayo, kurahisisha.
- 5 0
- 10 0
- a 0
- x 0
- -7 0
- -4 0
- (a) (10p) 0 (b) 10p 0
- (a) (3a) 0 (b) 3a 0
- (a) (-27x 5 y) 0 (b) -27x 5 y 0
- (a) (-92y 8 z) 0 (b) -92y 8 z 0
- (a) 15 0 (b) 15 1
- (a) -6 0 (b) -6 1
- 2 • x 0 + 5 • y 0
- 8 • m 0 - 4 • n 0
Kurahisisha Maneno Kutumia Quotient kwa Mali ya Nguvu
Katika mazoezi yafuatayo, kurahisisha.
- (32)5
- (45)3
- (m6)3
- (p2)5
- (xy)10
- (ab)8
- (a3b)2
- (2xy)4
Kurahisisha Maneno kwa kutumia Mali kadhaa
Katika mazoezi yafuatayo, kurahisisha.
- (x2)4x5
- (y4)3y7
- (u3)4u10
- (y2)5y6
- y8(y5)2
- p11(p5)3
- r5(r4⋅r
- a3⋅a4(a7
- (x2x8)3
- (uu10)2
- (a4⋅a6a3)2
- (x3⋅x8x4)3
- (y3)5(y4)3
- (z6)2(z2)4
- (x3)6(x4)7
- (x4)8(x5)7
- (2r35s)4
- (3m24n)3
- (3y2⋅y5y15⋅y8)0
- (15z4⋅z90.3z2)0
- (r2)5(r4)2(r3)7
- (p4)2(p3)5(p2)9
- (3x4)3(2x3)2(6x5)2
- (−2y3)4(3y4)2(−6y3)2
Kugawanya Monomials
Katika mazoezi yafuatayo, ugawanye monomials.
- 48b 8 ÷ 6b 2
- 42a 14 ÷ 6a 2
- 36x 3 ÷ (-2x 9)
- 20u 8 ÷ (-4u 6)
- 18x39x2
- 36y94y7
- −35x7−42x13
- 18x5−27x9
- 18r5s3r3s9
- 24p7q6p2q5
- 8mn1064mn4
- 10a4b50a2b6
- −12x4y915x6y3
- 48x11y9z336x6y8z5
- 64x5y9z748x7y12z6
- (10u2v)(4u3v6)5u9v2
- (6m2n)(5m4n3)3m10n2
- (6a4b3)(4ab5)(12a8b)(a3b)
- (4u5v4)(15u8v)(12u3v)(u6v)
Mazoezi ya mchanganyiko
- (a) 24a 5 + 2a 5 (b) 24a 5 ÷ 2a 5 (c) 24a 5 • 2a 5 (d) 24a 5 ÷ 2a 5
- (a) 15n 10 + 3n 10 (b) 15n 10 - 3n 10 (c) 15n 10 • 3n 10 (d) 15n 10 ÷ 3n 10
- (a) p 4 • p 6 (b) (p 4) 6
- (a) q 5 • q 3 (b) (q 5) 3
- (a)y3y (b)yy3
- (a)z6z5 (b)z5z6
- (8x 5) (9x) ÷ 6x 3
- (4y 5) (12y 7) ÷ 8y 2
- 27a73a3+54a99a5
- 32c114c5+42c96c3
- 32y58y2−60y105y7
- 48x66x4−35x97x7
- 63r6s39r4s2−72r2s26s
- 56y4z57y3z3−45y2z25y
kila siku Math
- Kumbukumbu Megabyte moja ni takriban 10 6 bytes. Gigabyte moja ni takriban 10 9 bytes. Ni megabytes ngapi katika gigabyte moja?
- Kumbukumbu Megabyte moja ni takriban 10 6 bytes. Terabyte moja ni takriban 10 12 bytes. Ni megabytes ngapi katika terabyte moja?
Mazoezi ya kuandika
- Vic anadhani quotientx20x4 simplifies kwa x 5. Ni nini kibaya na hoja zake?
- Mai hurahisisha quotienty3y kwa kuandikay3y = 3. Ni nini kibaya na hoja yake?
- Wakati Dimple aliporahisishwa -3 0 na (1-3) 0 alipata jibu lile lile. Eleza jinsi ya kutumia Utaratibu wa Uendeshaji kwa usahihi hutoa majibu tofauti.
- Roxie anadhani katika 10 simplifies kwa 0. Ungesema nini kumshawishi Roxie yeye ni sahihi?
Self Check
(a) Baada ya kukamilisha mazoezi, tumia orodha hii ili kutathmini ujuzi wako wa malengo ya sehemu hii.
(b) Kwa kiwango cha 1—10, ungewezaje kupima ujuzi wako wa sehemu hii kwa kuzingatia majibu yako kwenye orodha? Unawezaje kuboresha hii?