Masharti muhimu Sura ya 09: Kuanzishwa kwa mizizi na Radicals
- Page ID
- 177868
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)
- Index
- Katika\(\sqrt[n]{a}\),\(n\) inaitwa index ya radical.
- Kama radicals
- Radicals na index sawa na radicand sawa huitwa kama radicals.
- Kama Mizizi ya mraba
- Mizizi ya mraba yenye radicand sawa huitwa kama mizizi ya mraba.
- Katika mizizi ya idadi
- Ikiwa\(b^n=a\), basi\(b\) ni na mizizi\(n\) ya\(a\).
- Mkuu katika mizizi
- Mzizi mkuu\(n\) wa\(a\) imeandikwa\(\sqrt[n]{a}\).
- radical equation
- Equation ambayo variable iko katika radicand ya mizizi ya mraba inaitwa equation radical.
- Mantiki watetezi
-
- Kama\(\sqrt[n]{a}\) ni idadi halisi na\(n≥2\),\(𝑎^{\frac{1}{𝑛}}=\sqrt[n]{a}\).
- Kwa integers yoyote chanya\(m\) na\(n\),\(a^{\frac{m}{n}}=(\sqrt[n]{a})^m\) na\(a^{\frac{m}{n}}=\sqrt[n]{a^m}\).
- Kutambua Denominator
- Mchakato wa kubadili sehemu na radical katika denominator kwa sehemu sawa ambayo denominator ni integer inaitwa rationalizing denominator.
- Mraba wa Idadi
-
- Ikiwa\(n^2=m\), basi\(m\) ni mraba wa\(n\)
- Mizizi ya Mizizi ya mraba
-
- Ikiwa\(m=n^2\), basi\(\sqrt{m}=n\). Tunasoma\(\sqrt{m}\) kama 'mizizi mraba ya\(m\). '
- Mizizi ya Mraba ya Idadi
-
- Kama\(n^2=m\), basi\(n\) ni mizizi ya mraba ya\(m\)