# Masharti muhimu Sura ya 10: Ulinganifu wa Quadratic

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

Axis ya Ulinganifu
Mhimili wa ulinganifu ni mstari wa wima unaopita katikati ya parabola$$y=ax^2+bx+c$$.
Kukamilisha Square
Kukamilisha mraba ni njia inayotumiwa kutatua equations quadratic.
Mstari Hata integers
Mstari hata integers ni hata integers zinazofuata haki baada ya mtu mwingine. Ikiwa hata integer inawakilishwa na n, mfululizo wa pili hata integer ni$$n+2$$, na ijayo baada ya hapo ni$$n+4$$.
mfululizo isiyo ya kawaida integers
Mstari integers isiyo ya kawaida ni integers isiyo ya kawaida kwamba kufuata haki baada ya mtu mwingine. Ikiwa integer isiyo ya kawaida inawakilishwa na n, integer ya mfululizo isiyo ya kawaida ni$$n+2$$, na ijayo baada ya hapo ni$$n+4$$.
Kubagua
Katika Mfumo wa Quadratic,$$x=\frac{-b±\sqrt{b^2-4ac}}{2a}$$ wingi$$b^2−4ac$$ huitwa ubaguzi.
Parabola
Grafu ya equation quadratic katika vigezo viwili ni parabola.
equation quadratic ni equation ya fomu$$ax^2+bx+c=0$$, ambapo$$a≠0$$.
equation quadratic katika vigezo mbili$$a$$, ambapo$$b$$,, na$$c$$ ni namba halisi na$$a≠0$$ ni equation ya fomu$$y=ax^2+bx+c$$.
Mali ya Mizizi ya Mraba inasema kwamba, ikiwa$$x^2=k$$ na$$k≥0$$, basi$$x=\sqrt{k}$$ au$$x=−\sqrt{k}$$.
$$x$$-intercepts ya Parabola
$$x$$-intercepts ni pointi juu ya parabola ambapo$$y=0$$.
$$y$$-intercept ya Parabola
$$y$$-intercept ni uhakika juu ya parabola ambapo$$𝑥=0$$.