Skip to main content
Global

11.8E: Kutatua Mifumo na Utawala wa Cramer (Mazoezi)

  • Page ID
    177917
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Kwa mazoezi yafuatayo, pata uamuzi.

    71. \(\left|\begin{array}{cc}100 & 0 \\ 0 & 0\end{array}\right|\)

    72. \(\left|\begin{array}{ll}0.2 & -0.6 \\ 0.7 & -1.1\end{array}\right|\)

    73. \(\left|\begin{array}{ccc}-1 & 4 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & -3\end{array}\right|\)

    74. \(\left|\begin{array}{ccc}\sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & \sqrt{2}\end{array}\right|\)

    Kwa mazoezi yafuatayo, tumia Kanuni ya Cramer ili kutatua mifumo ya mstari wa equations.

    75.

    \(4 x-2 y=23\)
    \(-5 x-10 y=-35\)

    76.

    \(0.2 x-0.1 y=0\)

    \(-0.3 x+0.3 y=2.5\)

    77.

    \(-0.5 x+0.1 y=0.3\)
    \(-0.25 x+0.05 y=0.15\)

    78.

    \(x+6 y+3 z=4\)

    \(2 x+y+2 z=3\)
    \(3 x-2 y+z=0\)

    79.

    \(4 x-3 y+5 z=-\frac{5}{2}\)

    \(\quad 7 x-9 y-3 z=\frac{3}{2}\)
    \(x-5 y-5 z=\frac{5}{2}\)

    80.

    \(\frac{3}{10} x-\frac{1}{5} y-\frac{3}{10} z=-\frac{1}{50}\)

    \(\frac{1}{10} x-\frac{1}{10} y-\frac{1}{2} z=-\frac{9}{50}\)
    \(\frac{2}{5} x-\frac{1}{2} y-\frac{3}{5} z=-\frac{1}{5}\)