Skip to main content
Global

10.3: Transições de fase

  • Page ID
    184780
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Objetivos de
    • Defina transições de fase e temperaturas de transição de fase
    • Explicar a relação entre temperaturas de transição de fase e forças de atração intermoleculares
    • Descreva os processos representados pelas curvas típicas de aquecimento e resfriamento e calcule os fluxos de calor e as mudanças de entalpia que acompanham esses processos

    Testemunhamos e utilizamos mudanças de estado físico, ou transições de fase, de várias maneiras. Como um exemplo de importância global, considere a evaporação, condensação, congelamento e derretimento da água. Essas mudanças de estado são aspectos essenciais do ciclo da água na Terra, bem como muitos outros fenômenos naturais e processos tecnológicos de importância central para nossas vidas. Neste módulo, os aspectos essenciais das transições de fase são explorados.

    Vaporização e condensação

    Quando um líquido se vaporiza em um recipiente fechado, as moléculas de gás não conseguem escapar. À medida que essas moléculas da fase gasosa se movem aleatoriamente, elas ocasionalmente colidem com a superfície da fase condensada e, em alguns casos, essas colisões resultarão na reentrada das moléculas na fase condensada. A mudança da fase gasosa para o líquido é chamada de condensação. Quando a taxa de condensação se torna igual à taxa de vaporização, nem a quantidade de líquido nem a quantidade de vapor no recipiente mudam. Diz-se então que o vapor no recipiente está em equilíbrio com o líquido. Lembre-se de que essa não é uma situação estática, pois as moléculas são trocadas continuamente entre as fases condensada e gasosa. Esse é um exemplo de equilíbrio dinâmico, o status de um sistema no qual processos recíprocos (por exemplo, vaporização e condensação) ocorrem em taxas iguais. A pressão exercida pelo vapor em equilíbrio com um líquido em um recipiente fechado a uma determinada temperatura é chamada de pressão de vapor do líquido (ou pressão de vapor de equilíbrio). A área da superfície do líquido em contato com o vapor e o tamanho do vaso não afetam a pressão do vapor, embora afetem o tempo necessário para que o equilíbrio seja alcançado. Podemos medir a pressão de vapor de um líquido colocando uma amostra em um recipiente fechado, como o ilustrado na Figura\(\PageIndex{1}\), e usando um manômetro para medir o aumento da pressão devido ao vapor em equilíbrio com a fase condensada.

    Figura\(\PageIndex{1}\): Em um recipiente fechado, o equilíbrio dinâmico é alcançado quando (a) a taxa de moléculas que escapam do líquido para se tornar o gás (b) aumenta e, eventualmente, (c) é igual à taxa de moléculas de gás que entram no líquido. Quando esse equilíbrio é alcançado, a pressão de vapor do gás é constante, embora os processos de vaporização e condensação continuem.
    Três imagens são mostradas e rotuladas como “a”, “b” e “c”. Cada imagem mostra uma lâmpada redonda conectada à direita a um tubo que é horizontal, depois é dobrada verticalmente, se curva e, em seguida, é vertical novamente para formar uma forma de U. Uma válvula está localizada na parte horizontal do tubo. A imagem a mostra um líquido no bulbo, rotulado como “Líquido”, e setas voltadas para cima se afastando da superfície do líquido. A frase “As moléculas escapam da superfície e formam vapor” está escrita abaixo do bulbo, e um líquido cinza na parte em forma de u do tubo é mostrado em alturas iguais nos lados direito e esquerdo. A imagem b mostra um líquido no bulbo, rotulado como “Líquido”, e setas voltadas para cima se afastando da superfície do líquido para as moléculas desenhadas na parte superior do bulbo. Um líquido cinza na parte em forma de u do tubo é mostrado um pouco mais alto no lado direito do que no lado esquerdo. A imagem c mostra um líquido no bulbo, rotulado como “Líquido”, e setas voltadas para cima se afastando da superfície do líquido para as moléculas desenhadas na parte superior do bulbo. Há mais moléculas presentes em c do que em b. A frase “Equilíbrio alcançado, pressão de vapor determinada” está escrita abaixo do bulbo e um líquido cinza na parte em forma de u do tubo é mostrado mais acima no lado direito. Uma linha horizontal é desenhada nivelada com cada um desses níveis de líquido e a distância entre as linhas é rotulada com uma seta de duas pontas. Esta seção é rotulada com a frase “Pressão de vapor”.

    As identidades químicas das moléculas em um líquido determinam os tipos (e forças) de atrações intermoleculares possíveis; consequentemente, diferentes substâncias exibirão diferentes pressões de vapor de equilíbrio. Forças atrativas intermoleculares relativamente fortes servirão para impedir a vaporização, bem como favorecer a “recaptura” de moléculas em fase gasosa quando elas colidem com a superfície do líquido, resultando em uma pressão de vapor relativamente baixa. As atrações intermoleculares fracas apresentam menos barreira à vaporização e uma probabilidade reduzida de recaptura de gás, produzindo pressões de vapor relativamente altas. O exemplo a seguir ilustra essa dependência da pressão de vapor nas forças de atração intermoleculares.

    Exemplo\(\PageIndex{1}\): Explaining Vapor Pressure in Terms of IMFs

    Dadas as fórmulas estruturais mostradas para esses quatro compostos, explique suas pressões relativas de vapor em termos de tipos e extensões de IMFs:

    150842949468695.png

    Solução

    O éter dietílico tem um dipolo muito pequeno e a maioria de suas atrações intermoleculares são as forças de Londres. Embora essa molécula seja a maior das quatro consideradas, seus FMI são os mais fracos e, como resultado, suas moléculas escapam mais facilmente do líquido. Ele também tem a maior pressão de vapor. Devido ao seu tamanho menor, o etanol apresenta forças de dispersão mais fracas do que o éter dietílico. No entanto, o etanol é capaz de se ligar ao hidrogênio e, portanto, exibe FMI gerais mais fortes, o que significa que menos moléculas escapam do líquido a qualquer temperatura e, portanto, o etanol tem uma pressão de vapor menor do que o éter dietílico. A água é muito menor do que qualquer uma das substâncias anteriores e exibe forças de dispersão mais fracas, mas sua extensa ligação de hidrogênio fornece atrações intermoleculares mais fortes, menos moléculas escapando do líquido e uma pressão de vapor menor do que a do éter dietílico ou do etanol. O etilenoglicol tem dois grupos −OH, então, como a água, ele exibe uma extensa ligação de hidrogênio. É muito maior do que a água e, portanto, experimenta forças maiores de Londres. Seus FMI gerais são as maiores dessas quatro substâncias, o que significa que sua taxa de vaporização será a mais lenta e, consequentemente, sua pressão de vapor a mais baixa.

    Exercício\(\PageIndex{1}\)

    At 20 °C, the vapor pressures of several alcohols are given in this table. Explain these vapor pressures in terms of types and extents of IMFs for these alcohols:

    At 20 °C, the vapor pressures of several alcohols
    Compound methanol CH3OH ethanol C2H5OH propanol C3H7OH butanol C4H9OH
    Vapor Pressure at 20 °C 11.9 kPa 5.95 kPa 2.67 kPa 0.56 kPa
    Answer

    All these compounds exhibit hydrogen bonding; these strong IMFs are difficult for the molecules to overcome, so the vapor pressures are relatively low. As the size of molecule increases from methanol to butanol, dispersion forces increase, which means that the vapor pressures decrease as observed:

    \[P_{methanol} > P_{ethanol} > P_{propanol} > P_{butanol} \nonumber \]

    As temperature increases, the vapor pressure of a liquid also increases due to the increased average KE of its molecules. Recall that at any given temperature, the molecules of a substance experience a range of kinetic energies, with a certain fraction of molecules having a sufficient energy to overcome IMF and escape the liquid (vaporize). At a higher temperature, a greater fraction of molecules have enough energy to escape from the liquid, as shown in Figure \(\PageIndex{2}\). The escape of more molecules per unit of time and the greater average speed of the molecules that escape both contribute to the higher vapor pressure.

    Figure \(\PageIndex{2}\): Temperature affects the distribution of kinetic energies for the molecules in a liquid. At the higher temperature, more molecules have the necessary kinetic energy, KE, to escape from the liquid into the gas phase.
    A graph is shown where the y-axis is labeled “Number of molecules” and the x-axis is labeled “Kinetic Energy.” Two lines are graphed and a vertical dotted line, labeled “Minimum K E needed to escape,” is drawn halfway across the x-axis. The first line move sharply upward and has a high peak near the left side of the x-axis. It drops just as steeply and ends about 60 percent of the way across the x-axis. This line is labeled “Low T.” A second line, labeled “High T,” begins at the same point as the first, but does not go to such a high point, is wider, and ends slightly further to the right on the x-axis.

    Boiling Points

    When the vapor pressure increases enough to equal the external atmospheric pressure, the liquid reaches its boiling point. The boiling point of a liquid is the temperature at which its equilibrium vapor pressure is equal to the pressure exerted on the liquid by its gaseous surroundings. For liquids in open containers, this pressure is that due to the earth’s atmosphere. The normal boiling point of a liquid is defined as its boiling point when surrounding pressure is equal to 1 atm (101.3 kPa). Figure \(\PageIndex{3}\) shows the variation in vapor pressure with temperature for several different substances. Considering the definition of boiling point, these curves may be seen as depicting the dependence of a liquid’s boiling point on surrounding pressure.

    Figure \(\PageIndex{3}\): The boiling points of liquids are the temperatures at which their equilibrium vapor pressures equal the pressure of the surrounding atmosphere. Normal boiling points are those corresponding to a pressure of 1 atm (101.3 kPa.)
    A graph is shown where the x-axis is labeled “Temperature ( degree sign, C )” and has values of 200 to 1000 in increments of 200 and the y-axis is labeled “Pressure ( k P a )” and has values of 20 to 120 in increments of 20. A horizontal dotted line extends across the graph at point 780 on the y-axis while three vertical dotted lines extend from points 35, 78, and 100 to meet the horizontal dotted line. Four lines are graphed. The first line, labeled “ethyl ether,” begins at the point “0 , 200” and extends in a slight curve to point “45, 1000” while the second line, labeled “ethanol”, extends from point “0, 20” to point “88, 1000” in a more extreme curve. The third line, labeled “water,” begins at the point “0, 0” and extends in a curve to point “108, 1000” while the fourth line, labeled “ethylene glycol,” extends from point “80, 0” to point “140, 100” in a very shallow curve.
    Example \(\PageIndex{2}\): A Boiling Point at Reduced Pressure

    A typical atmospheric pressure in Leadville, Colorado (elevation 10,200 feet) is 68 kPa. Use the graph in Figure \(\PageIndex{3}\) to determine the boiling point of water at this elevation.

    Solution

    The graph of the vapor pressure of water versus temperature in Figure \(\PageIndex{3}\) indicates that the vapor pressure of water is 68 kPa at about 90 °C. Thus, at about 90 °C, the vapor pressure of water will equal the atmospheric pressure in Leadville, and water will boil.

    Exercise \(\PageIndex{2}\)

    The boiling point of ethyl ether was measured to be 10 °C at a base camp on the slopes of Mount Everest. Use Figure \(\PageIndex{3}\) to determine the approximate atmospheric pressure at the camp.

    Answer

    Approximately 40 kPa (0.4 atm)

     

    The quantitative relation between a substance’s vapor pressure and its temperature is described by the Clausius-Clapeyron equation:

    \[P=Ae^{−ΔH_{vap}/RT} \label{10.4.1} \]

    where

    • \(ΔH_{vap}\) is the enthalpy of vaporization for the liquid,
    • \(R\) is the gas constant, and
    • \(\ln A\) is a constant whose value depends on the chemical identity of the substance.

    Equation \(\ref{10.4.1}\) is often rearranged into logarithmic form to yield the linear equation:

    \[\ln P=−\dfrac{ΔH_\ce{vap}}{RT}+\ln A \label{10.4.2} \]

    This linear equation may be expressed in a two-point format that is convenient for use in various computations, as demonstrated in the examples and exercises that follow. If at temperature \(T_1\), the vapor pressure is \( P_1\), and at temperature \(T_2\), the vapor pressure is \(T_2\), the corresponding linear equations are:

    \[\ln P_1=−\dfrac{ΔH_\ce{vap}}{RT_1}+\ln A \nonumber \]

    and

    \[\ln P_2=−\dfrac{ΔH_\ce{vap}}{RT_2}+\ln A \label{10.4.3} \]

    Since the constant, ln A, is the same, these two equations may be rearranged to isolate \(\ln A\) and then set them equal to one another:

    \(\ln P_1+\dfrac{ΔH_\ce{vap}}{RT_1}=\ln P_2+\dfrac{ΔH_\ce{vap}}{RT_2}\label{10.4.5}\)

    which can be combined into:

    \[\ln \left(\dfrac{P_2}{P_1}\right)=\dfrac{ΔH_\ce{vap}}{R} \left( \dfrac{1}{T_1}−\dfrac{1}{T_2}\right) \label{10.4.6} \]

    Example \(\PageIndex{3}\): Estimating Enthalpy of Vaporization

    Isooctane (2,2,4-trimethylpentane) has an octane rating of 100. It is used as one of the standards for the octane-rating system for gasoline. At 34.0 °C, the vapor pressure of isooctane is 10.0 kPa, and at 98.8 °C, its vapor pressure is 100.0 kPa. Use this information to estimate the enthalpy of vaporization for isooctane.

    Solution

    The enthalpy of vaporization, \(ΔH_\ce{vap}\), can be determined by using the Clausius-Clapeyron equation (Equation \(\ref{10.4.6}\)):

    \[\ln\left(\dfrac{P_2}{P_1}\right)=\dfrac{ΔH_\ce{vap}}{R}\left(\dfrac{1}{T_1}−\dfrac{1}{T_2}\right) \nonumber \]

    Since we have two vapor pressure-temperature values

    • \(T_1 = 34.0^oC = 307.2\, K\)
    • \(P_1 = 10.0\, kPa\) and
    • \(T_2 = 98.8 ^oC = 372.0\, K\)
    • \(P_2 = 100\, kPa\)

    we can substitute them into this equation and solve for \(ΔH_{vap}\). Rearranging the Clausius-Clapeyron equation and solving for \(ΔH_{vap}\) yields:

    \[ \begin{align*} ΔH_\ce{vap} &= \dfrac{R⋅\ln\left(\dfrac{P_2}{P_1}\right)}{\left(\dfrac{1}{T_1}−\dfrac{1}{T_2}\right)} \\[4pt] &= \dfrac{(8.3145\:J/mol⋅K)⋅\ln \left(\dfrac{100\: kPa}{10.0\: kPa}\right)}{\left(\dfrac{1}{307.2\:K}−\dfrac{1}{372.0\:K}\right)} \\[4pt] &=33,800\, J/mol =33.8\, kJ/mol \end{align*} \nonumber \]

    Note that the pressure can be in any units, so long as they agree for both P values, but the temperature must be in kelvin for the Clausius-Clapeyron equation to be valid.

    Exercise \(\PageIndex{3}\)

    At 20.0 °C, the vapor pressure of ethanol is 5.95 kPa, and at 63.5 °C, its vapor pressure is 53.3 kPa. Use this information to estimate the enthalpy of vaporization for ethanol.

    Answer

    47,782 J/mol = 47.8 kJ/mol

    Example \(\PageIndex{4}\): Estimating Temperature (or Vapor Pressure)

    For benzene (C6H6), the normal boiling point is 80.1 °C and the enthalpy of vaporization is 30.8 kJ/mol. What is the boiling point of benzene in Denver, where atmospheric pressure = 83.4 kPa?

    Solution

    If the temperature and vapor pressure are known at one point, along with the enthalpy of vaporization, ΔHvap, then the temperature that corresponds to a different vapor pressure (or the vapor pressure that corresponds to a different temperature) can be determined by using the Clausius-Clapeyron equation (Equation \(\ref{10.4.1}\)) :

    \[\ln\left(\dfrac{P_2}{P_1}\right)=\dfrac{ΔH_\ce{vap}}{R}\left(\dfrac{1}{T_1}−\dfrac{1}{T_2}\right) \nonumber \]

    Since the normal boiling point is the temperature at which the vapor pressure equals atmospheric pressure at sea level, we know one vapor pressure-temperature value (\(T_1\) = 80.1 °C = 353.3 K, \(P_1\) = 101.3 kPa, \(ΔH_{vap}\) = 30.8 kJ/mol) and want to find the temperature (\(T_2\)) that corresponds to vapor pressure P2 = 83.4 kPa. We can substitute these values into the Clausius-Clapeyron equation and then solve for \(T_2\). Rearranging the Clausius-Clapeyron equation and solving for \(T_2\) yields:

    \[\begin{align*}
    T_2 &=\left(\dfrac{−R⋅\ln\left(\dfrac{P_2}{P_1}\right)}{ΔH_\ce{vap}}+\dfrac{1}{T_1}\right)^{−1} \\[4pt] &=\mathrm{\left(\dfrac{−(8.3145\:J/mol⋅K)⋅\ln\left(\dfrac{83.4\:kPa}{101.3\:kPa}\right)}{30,800\: J/mol}+\dfrac{1}{353.3\:K}\right)^{−1}}\\[4pt]
    &=\mathrm{346.9\: K\: or\:73.8^\circ C}
    \end{align*} \nonumber \]

    Exercise \(\PageIndex{4}\)

    For acetone \(\ce{(CH3)2CO}\), the normal boiling point is 56.5 °C and the enthalpy of vaporization is 31.3 kJ/mol. What is the vapor pressure of acetone at 25.0 °C?

    Answer

    30.1 kPa

     

    Enthalpy of Vaporization

    Vaporization is an endothermic process. The cooling effect can be evident when you leave a swimming pool or a shower. When the water on your skin evaporates, it removes heat from your skin and causes you to feel cold. The energy change associated with the vaporization process is the enthalpy of vaporization, \(ΔH_{vap}\). For example, the vaporization of water at standard temperature is represented by:

    \[\ce{H2O}(l)⟶\ce{H2O}(g)\hspace{20px}ΔH_\ce{vap}=\mathrm{44.01\: kJ/mol} \nonumber \]

    As described in the chapter on thermochemistry, the reverse of an endothermic process is exothermic. And so, the condensation of a gas releases heat:

    \[\ce{H2O}(g)⟶\ce{H2O}(l)\hspace{20px}ΔH_\ce{con}=−ΔH_\ce{vap}=\mathrm{−44.01\:kJ/mol} \nonumber \]

    Example \(\PageIndex{5}\): Using Enthalpy of Vaporization

    One way our body is cooled is by evaporation of the water in sweat (Figure \(\PageIndex{4}\)). In very hot climates, we can lose as much as 1.5 L of sweat per day. Although sweat is not pure water, we can get an approximate value of the amount of heat removed by evaporation by assuming that it is. How much heat is required to evaporate 1.5 L of water (1.5 kg) at T = 37 °C (normal body temperature); \(ΔH_{vap} = 43.46\, kJ/mol\) at 37 °C.

    A person’s shoulder and neck are shown and their skin is covered in beads of liquid.
    Figure \(\PageIndex{4}\): Evaporation of sweat helps cool the body. (credit: “Kullez”/Flickr)

    Solution We start with the known volume of sweat (approximated as just water) and use the given information to convert to the amount of heat needed:

    \[\mathrm{1.5\cancel{L}×\dfrac{1000\cancel{g}}{1\cancel{L}}×\dfrac{1\cancel{mol}}{18\cancel{g}}×\dfrac{43.46\:kJ}{1\cancel{mol}}=3.6×10^3\:kJ} \nonumber \]

    Thus, 3600 kJ of heat are removed by the evaporation of 1.5 L of water.

    Exercise \(\PageIndex{5}\): Boiling Ammonia

    How much heat is required to evaporate 100.0 g of liquid ammonia, \(\ce{NH3}\), at its boiling point if its enthalpy of vaporization is 4.8 kJ/mol?

    Answer

    28 kJ

    Melting and Freezing

    When we heat a crystalline solid, we increase the average energy of its atoms, molecules, or ions and the solid gets hotter. At some point, the added energy becomes large enough to partially overcome the forces holding the molecules or ions of the solid in their fixed positions, and the solid begins the process of transitioning to the liquid state, or melting. At this point, the temperature of the solid stops rising, despite the continual input of heat, and it remains constant until all of the solid is melted. Only after all of the solid has melted will continued heating increase the temperature of the liquid (Figure \(\PageIndex{5}\).

    Figure \(\PageIndex{5}\): (a) This beaker of ice has a temperature of −12.0 °C. (b) After 10 minutes the ice has absorbed enough heat from the air to warm to 0 °C. A small amount has melted. (c) Thirty minutes later, the ice has absorbed more heat, but its temperature is still 0 °C. The ice melts without changing its temperature. (d) Only after all the ice has melted does the heat absorbed cause the temperature to increase to 22.2 °C. (credit: modification of work by Mark Ott).
    This figure shows four photos each labeled, “a,” “b,” “c,” and, “d.” Each photo shows a beaker with ice and a digital thermometer. The first photo shows ice cubes in the beaker, and the thermometer reads negative 12.0 degrees C. The second photo shows slightly melted ice, and the thermometer reads 0.0 degrees C. The third photo shows more water than ice in the beaker. The thermometer reads 0.0 degrees C. The fourth photo shows the ice completely melted, and the thermometer reads 22.2 degrees C.

    If we stop heating during melting and place the mixture of solid and liquid in a perfectly insulated container so no heat can enter or escape, the solid and liquid phases remain in equilibrium. This is almost the situation with a mixture of ice and water in a very good thermos bottle; almost no heat gets in or out, and the mixture of solid ice and liquid water remains for hours. In a mixture of solid and liquid at equilibrium, the reciprocal processes of melting and freezing occur at equal rates, and the quantities of solid and liquid therefore remain constant. The temperature at which the solid and liquid phases of a given substance are in equilibrium is called the melting point of the solid or the freezing point of the liquid. Use of one term or the other is normally dictated by the direction of the phase transition being considered, for example, solid to liquid (melting) or liquid to solid (freezing).

    The enthalpy of fusion and the melting point of a crystalline solid depend on the strength of the attractive forces between the units present in the crystal. Molecules with weak attractive forces form crystals with low melting points. Crystals consisting of particles with stronger attractive forces melt at higher temperatures.

    The amount of heat required to change one mole of a substance from the solid state to the liquid state is the enthalpy of fusion, ΔHfus of the substance. The enthalpy of fusion of ice is 6.0 kJ/mol at 0 °C. Fusion (melting) is an endothermic process:

    \[\ce{H2O}_{(s)} \rightarrow \ce{H2O}_{(l)} \;\; ΔH_\ce{fus}=\mathrm{6.01\; kJ/mol} \label{10.4.9} \]

    The reciprocal process, freezing, is an exothermic process whose enthalpy change is −6.0 kJ/mol at 0 °C:

    \[\ce{H_2O}_{(l)} \rightarrow \ce{H_2O}_{(s)}\;\; ΔH_\ce{frz}=−ΔH_\ce{fus}=−6.01\;\mathrm{kJ/mol} \label{10.4.10} \]

    Sublimation and Deposition

    Some solids can transition directly into the gaseous state, bypassing the liquid state, via a process known as sublimation. At room temperature and standard pressure, a piece of dry ice (solid CO2) sublimes, appearing to gradually disappear without ever forming any liquid. Snow and ice sublime at temperatures below the melting point of water, a slow process that may be accelerated by winds and the reduced atmospheric pressures at high altitudes. When solid iodine is warmed, the solid sublimes and a vivid purple vapor forms (Figure \(\PageIndex{6}\)). The reverse of sublimation is called deposition, a process in which gaseous substances condense directly into the solid state, bypassing the liquid state. The formation of frost is an example of deposition.

    Figure \(\PageIndex{6}\): Sublimation of solid iodine in the bottom of the tube produces a purple gas that subsequently deposits as solid iodine on the colder part of the tube above. (credit: modification of work by Mark Ott)
    This figure shows a test tube. In the bottom is a dark substance which breaks up into a purple gas at the top.

    Like vaporization, the process of sublimation requires an input of energy to overcome intermolecular attractions. The enthalpy of sublimation, ΔHsub, is the energy required to convert one mole of a substance from the solid to the gaseous state. For example, the sublimation of carbon dioxide is represented by:

    \[\ce{CO2}(s)⟶\ce{CO2}(g)\hspace{20px}ΔH_\ce{sub}=\mathrm{26.1\: kJ/mol} \nonumber \]

    Likewise, the enthalpy change for the reverse process of deposition is equal in magnitude but opposite in sign to that for sublimation:

    \[\ce{CO2}(g)⟶\ce{CO2}(s)\hspace{20px}ΔH_\ce{dep}=−ΔH_\ce{sub}=\mathrm{−26.1\:kJ/mol} \nonumber \]

    Consider the extent to which intermolecular attractions must be overcome to achieve a given phase transition. Converting a solid into a liquid requires that these attractions be only partially overcome; transition to the gaseous state requires that they be completely overcome. As a result, the enthalpy of fusion for a substance is less than its enthalpy of vaporization. This same logic can be used to derive an approximate relation between the enthalpies of all phase changes for a given substance. Though not an entirely accurate description, sublimation may be conveniently modeled as a sequential two-step process of melting followed by vaporization in order to apply Hess’s Law.

    \[\mathrm{solid⟶liquid}\hspace{20px}ΔH_\ce{fus}\\\underline{\mathrm{liquid⟶gas}\hspace{20px}ΔH_\ce{vap}}\\\mathrm{solid⟶gas}\hspace{20px}ΔH_\ce{sub}=ΔH_\ce{fus}+ΔH_\ce{vap} \nonumber \]

    Viewed in this manner, the enthalpy of sublimation for a substance may be estimated as the sum of its enthalpies of fusion and vaporization, as illustrated in Figure \(\PageIndex{7}\). For example:
    Figure \(\PageIndex{7}\): For a given substance, the sum of its enthalpy of fusion and enthalpy of vaporization is approximately equal to its enthalpy of sublimation.
    A diagram is shown with a vertical line drawn on the left side and labeled “Energy” and three horizontal lines drawn near the bottom, lower third and top of the diagram. These three lines are labeled, from bottom to top, “Solid,” “Liquid” and “Gas.” Near the middle of the diagram, a vertical, upward-facing arrow is drawn from the solid line to the gas line and labeled “Sublimation, delta sign, H, subscript sub.” To the right of this arrow is a second vertical, upward-facing arrow that is drawn from the solid line to the liquid line and labeled “Fusion, delta sign, H, subscript fus.” Above the second arrow is a third arrow drawn from the liquid line to the gas line and labeled, “Vaporization, delta sign, H, subscript vap.”

     

    Heating and Cooling Curves

    In the chapter on thermochemistry, the relation between the amount of heat absorbed or related by a substance, q, and its accompanying temperature change, ΔT, was introduced:

    \[q=mcΔT \nonumber \]

    where m is the mass of the substance and c is its specific heat. The relation applies to matter being heated or cooled, but not undergoing a change in state. When a substance being heated or cooled reaches a temperature corresponding to one of its phase transitions, further gain or loss of heat is a result of diminishing or enhancing intermolecular attractions, instead of increasing or decreasing molecular kinetic energies. While a substance is undergoing a change in state, its temperature remains constant. Figure \(\PageIndex{8}\) shows a typical heating curve.

    Figure \(\PageIndex{8}\): A typical heating curve for a substance depicts changes in temperature that result as the substance absorbs increasing amounts of heat. Plateaus in the curve (regions of constant temperature) are exhibited when the substance undergoes phase transitions.
    A graph is shown where the x-axis is labeled “Amount of heat added” and the y-axis is labeled “Temperature ( degree sign C )” and has values of negative 10 to 100 in increments of 20. A right-facing horizontal arrow extends from point “0, 0” to the right side of the graph. A line graph begins at the lower left of the graph and moves to point “0” on the y-axis. This segment of the line is labeled “H, subscript 2, O ( s ).” The line then flattens and travels horizontally for a small distance. This segment is labeled “Solid begins to melt” on its left side and “All solid melted” on its right side. The line then goes steeply upward in a linear fashion until it hits point “100” on the y-axis. This segment of the line is labeled “H, subscript 2, O,( l ).” The line then flattens and travels horizontally for a moderate distance. This segment is labeled “Liquid begins to boil” on its left side and “All liquid evaporated” on its right side. The line then rises to a point above “100” on the y-axis. This segment of the line is labeled “H, subscript 2, O ( g ).”

    Consider the example of heating a pot of water to boiling. A stove burner will supply heat at a roughly constant rate; initially, this heat serves to increase the water’s temperature. When the water reaches its boiling point, the temperature remains constant despite the continued input of heat from the stove burner. This same temperature is maintained by the water as long as it is boiling. If the burner setting is increased to provide heat at a greater rate, the water temperature does not rise, but instead the boiling becomes more vigorous (rapid). This behavior is observed for other phase transitions as well: For example, temperature remains constant while the change of state is in progress.

    Example \(\PageIndex{6}\): Total Heat Needed to Change Temperature and Phase for a Substance

    How much heat is required to convert 135 g of ice at −15 °C into water vapor at 120 °C?

    Solution

    The transition described involves the following steps:

    1. Heat ice from −15 °C to 0 °C
    2. Melt ice
    3. Heat water from 0 °C to 100 °C
    4. Boil water
    5. Heat steam from 100 °C to 120 °C

    The heat needed to change the temperature of a given substance (with no change in phase) is: q = m × c × ΔT (see previous chapter on thermochemistry). The heat needed to induce a given change in phase is given by q = n × ΔH.

    Using these equations with the appropriate values for specific heat of ice, water, and steam, and enthalpies of fusion and vaporization, we have:

    \[\begin{align*}
    q_\ce{total}&=(m⋅c⋅ΔT)_\ce{ice}+n⋅ΔH_\ce{fus}+(m⋅c⋅ΔT)_\ce{water}+n⋅ΔH_\ce{vap}+(m⋅c⋅ΔT)_\ce{steam}\\[7pt]
    &=\mathrm{(135\: g⋅2.09\: J/g⋅°C⋅15°C)+\left(135⋅\dfrac{1\: mol}{18.02\:g}⋅6.01\: kJ/mol
    \right)}\\[7pt]
    &\mathrm{+(135\: g⋅4.18\: J/g⋅°C⋅100°C)+\left(135\: g⋅\dfrac{1\: mol}{18.02\:g}⋅40.67\: kJ/mol\right)}\\[7pt]
    &\mathrm{+(135\: g⋅1.84\: J/g⋅°C⋅20°C)}\\[7pt]
    &=\mathrm{4230\: J+45.0\: kJ+56,500\: J+305\: kJ+4970\: J}
    \end{align*} \nonumber \]

    Converting the quantities in J to kJ permits them to be summed, yielding the total heat required:

    \[\mathrm{=4.23\:kJ+45.0\: kJ+56.5\: kJ+305\: kJ+4.97\: kJ=416\: kJ} \nonumber \]

    Exercise \(\PageIndex{6}\)

    What is the total amount of heat released when 94.0 g water at 80.0 °C cools to form ice at −30.0 °C?

    Answer

    40.5 kJ

    Summary

    Phase transitions are processes that convert matter from one physical state into another. There are six phase transitions between the three phases of matter. Melting, vaporization, and sublimation are all endothermic processes, requiring an input of heat to overcome intermolecular attractions. The reciprocal transitions of freezing, condensation, and deposition are all exothermic processes, involving heat as intermolecular attractive forces are established or strengthened. The temperatures at which phase transitions occur are determined by the relative strengths of intermolecular attractions and are, therefore, dependent on the chemical identity of the substance.

    Key Equations

    • \(P=Ae^{−ΔH_\ce{vap}/RT}\)
    • \(\ln P=−\dfrac{ΔH_\ce{vap}}{RT}+\ln A\)
    • \(\ln\left(\dfrac{P_2}{P_1}\right)=\dfrac{ΔH_\ce{vap}}{R}\left(\dfrac{1}{T_1}−\dfrac{1}{T_2}\right)\)

    Glossary

    boiling point
    temperature at which the vapor pressure of a liquid equals the pressure of the gas above it
    Clausius-Clapeyron equation
    mathematical relationship between the temperature, vapor pressure, and enthalpy of vaporization for a substance
    condensation
    change from a gaseous to a liquid state
    deposition
    change from a gaseous state directly to a solid state
    dynamic equilibrium
    state of a system in which reciprocal processes are occurring at equal rates
    freezing
    change from a liquid state to a solid state
    freezing point
    temperature at which the solid and liquid phases of a substance are in equilibrium; see also melting point
    melting
    change from a solid state to a liquid state
    melting point
    temperature at which the solid and liquid phases of a substance are in equilibrium; see also freezing point
    normal boiling point
    temperature at which a liquid’s vapor pressure equals 1 atm (760 torr)
    sublimation
    change from solid state directly to gaseous state
    vapor pressure
    (also, equilibrium vapor pressure) pressure exerted by a vapor in equilibrium with a solid or a liquid at a given temperature
    vaporization
    change from liquid state to gaseous state