# 12.5: Revisão da fórmula do capítulo

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

## 12.1 Teste de duas variâncias

$H_{0} : \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}=\delta_{0}\nonumber$

$H_{a} : \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}} \neq \delta_{0}\nonumber$

se$$\delta_{0}=1$$ então

$H_{0} : \sigma_{1}^{2}=\sigma_{2}^{2}\nonumber$

$H_{a} : \sigma_{1}^{2} \neq \sigma_{2}\nonumber$

A estatística do teste é:

$F_{c}=\frac{S_{1}^{2}}{S_{2}^{2}}\nonumber$

## 12.3 A distribuição F e a razão F

$$S S_{\mathrm{between}}=\sum\left[\frac{\left(s_{j}\right)^{2}}{n_{j}}\right]-\frac{\left(\sum s_{j}\right)^{2}}{n}$$

$$S S_{\mathrm{total}}=\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}$$

$$S S_{\text {within}}=S S_{\text {total}}-S S_{\text {between}}$$

$$d f_{\mathrm{between}}=d f(n u m)=k-1$$

$$d f_{\text {within}}=d f(\text {denom})=n-k$$

$$M S_{\text {between}}=\frac{S S_{\text {between}}}{d f_{\text {between}}}$$

$$M S_{\text {within}}=\frac{S S_{\text {within}}}{d f_{\text {within}}}$$

$$F=\frac{M S_{\text {between}}}{M S_{\text {within}}}$$

• $$k$$= o número de grupos
• $$n_j$$= o tamanho do jésimo grupo
• $$s_j$$= a soma dos valores no jésimo grupo
• $$n$$= o número total de todos os valores (observações) combinados
• $$x$$= um valor (uma observação) dos dados
• $$s_{\overline{x}}^{2}$$= a variância das médias da amostra
• $$s^2_{pooled}$$= a média das variâncias da amostra (variância combinada)