Skip to main content
Global

7.5E : Exercices pour la section 7.5

  • Page ID
    197581
    • Edwin “Jed” Herman & Gilbert Strang
    • OpenStax
    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Utilisez un tableau d'intégrales pour évaluer les intégrales suivantes.

    1)\(\displaystyle ∫_0^4\frac{x}{\sqrt{1+2x}}\,dx\)

    2)\(\displaystyle ∫\frac{x+3}{x^2+2x+2}\,dx\)

    Réponse
    \(\displaystyle ∫\frac{x+3}{x^2+2x+2}\,dx = \tfrac{1}{2}\ln |x^2+2x+2|+2\arctan(x+1)+C\)

    3)\(\displaystyle ∫x^3\sqrt{1+2x^2}\,dx\)

    4)\(\displaystyle ∫\frac{1}{\sqrt{x^2+6x}}\,dx\)

    Réponse
    \(\displaystyle ∫\frac{1}{\sqrt{x^2+6x}}\,dx = \cosh^{−1}\left(\frac{x+3}{3}\right)+C\)

    5)\(\displaystyle ∫\frac{x}{x+1}\,dx\)

    6)\(\displaystyle ∫x⋅2^{x^2}\,dx\)

    Réponse
    \(\displaystyle ∫x⋅2^{x^2}\,dx = \frac{2^{x^2−1}}{\ln 2}+C\)

    7)\(\displaystyle ∫\frac{1}{4x^2+25}\,dx\)

    8)\(\displaystyle ∫\frac{dy}{\sqrt{4−y^2}}\)

    Réponse
    \(\displaystyle ∫\frac{dy}{\sqrt{4−y^2}} = \arcsin\left(\frac{y}{2}\right)+C\)

    9)\(\displaystyle ∫\sin^3(2x)\cos(2x)\,dx\)

    10)\(\displaystyle ∫\csc(2w)\cot(2w)\,dw\)

    Réponse
    \(\displaystyle ∫\csc(2w)\cot(2w)\,dw = −\tfrac{1}{2}\csc(2w)+C\)

    11)\(\displaystyle ∫2^y\,dy\)

    (12)\(\displaystyle ∫^1_0\frac{3x}{\sqrt{x^2+8}}\,dx\)

    Réponse
    \(\displaystyle ∫^1_0\frac{3x}{\sqrt{x^2+8}}\,dx = 9−6\sqrt{2}\)

    13)\(\displaystyle ∫^{1/4}_{−1/4}\sec^2(πx)\tan(πx)\,dx\)

    (14)\(\displaystyle ∫^{π/2}_0\tan^2\left(\frac{x}{2}\right)\,dx\)

    Réponse
    \(\displaystyle ∫^{π/2}_0\tan^2\left(\frac{x}{2}\right)\,dx = 2−\frac{π}{2}\)

    15)\(\displaystyle ∫\cos^3x\,dx\)

    16)\(\displaystyle ∫\tan^5(3x)\,dx\)

    Réponse
    \(\displaystyle ∫\tan^5(3x)\,dx = \tfrac{1}{12}\tan^4(3x)−\tfrac{1}{6}\tan^2(3x)+\tfrac{1}{3}\ln|\sec 3x|+C\)

    17)\(\displaystyle ∫\sin^2y\cos^3y\,dy\)

    Utilisez un CAS pour évaluer les intégrales suivantes. Des tableaux peuvent également être utilisés pour vérifier les réponses.

    18) [T]\(\displaystyle ∫\frac{dw}{1+\sec\left(\frac{w}{2}\right)}\)

    Réponse
    \(\displaystyle ∫\frac{dw}{1+\sec\left(\frac{w}{2}\right)} = 2\cot\left(\tfrac{w}{2}\right)−2\csc\left(\tfrac{w}{2}\right)+w+C\)

    19) [T]\(\displaystyle ∫\frac{dw}{1−\cos(7w)}\)

    20) [T]\(\displaystyle ∫^t_0\frac{dt}{4\cos t+3\sin t}\)

    Réponse
    \(\displaystyle ∫^t_0\frac{dt}{4\cos t+3\sin t} = \tfrac{1}{5}\ln\Big|\frac{2(5+4\sin t−3\cos t)}{4\cos t+3\sin t}\Big|\)

    21) [T]\(\displaystyle ∫\frac{\sqrt{x^2−9}}{3x}\,dx\)

    22) [T]\(\displaystyle ∫\frac{dx}{x^{1/2}+x^{1/3}}\)

    Réponse
    \(\displaystyle ∫\frac{dx}{x^{1/2}+x^{1/3}} = 6x^{1/6}−3x^{1/3}+2\sqrt{x}−6\ln[1+x^{1/6}]+C\)

    23) [T]\(\displaystyle ∫\frac{dx}{x\sqrt{x−1}}\)

    24) [T]\(\displaystyle ∫x^3\sin x\,dx\)

    Réponse
    \(\displaystyle ∫x^3\sin x\,dx = −x^3\cos x+3x^2\sin x+6x\cos x−6\sin x+C\)

    25) [T]\(\displaystyle ∫x\sqrt{x^4−9}\,dx\)

    26) [T]\(\displaystyle ∫\frac{x}{1+e^{−x^2}}\,dx\)

    Réponse
    \(\displaystyle ∫\frac{x}{1+e^{−x^2}}\,dx = \tfrac{1}{2}\left(x^2+\ln|1+e^{−x^2}|\right)+C\)

    27) [T]\(\displaystyle ∫\frac{\sqrt{3−5x}}{2x}\,dx\)

    28) [T]\(\displaystyle ∫\frac{dx}{x\sqrt{x−1}}\)

    Réponse
    \(\displaystyle ∫\frac{dx}{x\sqrt{x−1}} = 2\arctan\big(\sqrt{x−1}\big)+C\)

    29) [T]\(\displaystyle ∫e^x\cos^{−1}(e^x)\,dx\)

    Utilisez une calculatrice ou un CAS pour évaluer les intégrales suivantes.

    30) [T]\(\displaystyle ∫^{π/4}_0\cos 2x \, dx\)

    Réponse
    \(\displaystyle ∫^{π/4}_0\cos 2x \, dx = 0.5=\frac{1}{2}\)

    31) [T]\(\displaystyle ∫^1_0x⋅e^{−x^2}\,dx\)

    32) [T]\(\displaystyle ∫^8_0\frac{2x}{\sqrt{x^2+36}}\,dx\)

    Réponse
    \(\displaystyle ∫^8_0\frac{2x}{\sqrt{x^2+36}}\,dx = 8.0\)

    33) [T]\(\displaystyle ∫^{2/\sqrt{3}}_0\frac{1}{4+9x^2}\,dx\)

    34) [T]\(\displaystyle ∫\frac{dx}{x^2+4x+13}\)

    Réponse
    \(\displaystyle ∫\frac{dx}{x^2+4x+13} = \tfrac{1}{3}\arctan\left(\tfrac{1}{3}(x+2)\right)+C\)

    35) [T]\(\displaystyle ∫\frac{dx}{1+\sin x}\)

    Utilisez des tableaux pour évaluer les intégrales. Vous devrez peut-être compléter le carré ou modifier les variables pour mettre l'intégrale sous la forme indiquée dans le tableau.

    36)\(\displaystyle ∫\frac{dx}{x^2+2x+10}\)

    Réponse
    \(\displaystyle ∫\frac{dx}{x^2+2x+10} = \tfrac{1}{3}\arctan\left(\frac{x+1}{3}\right)+C\)

    (37)\(\displaystyle ∫\frac{dx}{\sqrt{x^2−6x}}\)

    38)\(\displaystyle ∫\frac{e^x}{\sqrt{e^{2x}−4}}\,dx\)

    Réponse
    \(\displaystyle ∫\frac{e^x}{\sqrt{e^{2x}−4}}\,dx = \ln\left(e^x+\sqrt{4+e^{2x}}\right)+C\)

    39)\(\displaystyle ∫\frac{\cos x}{\sin^2x+2\sin x}\,dx\)

    40)\(\displaystyle ∫\frac{\arctan(x^3)}{x^4}\,dx\)

    Réponse
    \(\displaystyle ∫\frac{\arctan(x^3)}{x^4}\,dx = \ln x−\tfrac{1}{6}\ln(x^6+1)−\frac{\arctan(x^3)}{3x^3}+C\)

    41)\(\displaystyle ∫\frac{\ln|x|\arcsin\left(\ln|x|\right)}{x}\,dx\)

    Utilisez des tableaux pour effectuer l'intégration.

    42)\(\displaystyle ∫\frac{dx}{\sqrt{x^2+16}}\)

    Réponse
    \(\displaystyle ∫\frac{dx}{\sqrt{x^2+16}} = \ln |x|+\sqrt{16+x^2}∣+C\)

    43)\(\displaystyle ∫\frac{3x}{2x+7}\,dx\)

    44)\(\displaystyle ∫\frac{dx}{1−\cos 4x}\)

    Réponse
    \(\displaystyle ∫\frac{dx}{1−\cos 4x} = −\frac{1}{4}\cot 2x+C\)

    45)\(\displaystyle ∫\frac{dx}{\sqrt{4x+1}}\)

    46) Trouvez la zone délimitée par\(y(4+25x^2)=5,\;x=0,\;y=0,\) et\(x=4.\) utilisez une table d'intégrales ou un CAS.

    Réponse
    \(\frac{1}{2}\arctan 10\)unités²

    47) La région délimitée entre la courbe\(y=\dfrac{1}{\sqrt{1+\cos x}}, \; 0.3≤x≤1.1,\) et l'\(x\)axe -tourne autour de l'\(x\)axe -pour générer un solide. Utilisez un tableau d'intégrales pour déterminer le volume du solide généré. (Arrondissez la réponse à deux décimales.)

    48) Utilisez la substitution et un tableau d'intégrales pour trouver l'aire de la surface générée en faisant tourner la courbe\(y=e^x,\; 0≤x≤3,\) autour de l'\(x\)axe. (Arrondissez la réponse à deux décimales.)

    Réponse
    \(1276.14\)unités²

    49) [T] Utilisez un tableau intégral et une calculatrice pour trouver l'aire de la surface générée en faisant tourner la courbe\(y=\dfrac{x^2}{2},\; 0≤x≤1,\) autour de l'\(x\)axe. (Arrondissez la réponse à deux décimales.)

    50) [T] Utilisez un CAS ou des tableaux pour trouver l'aire de la surface générée en faisant pivoter la courbe\(y=\cos x,\; 0≤x≤\frac{π}{2},\) autour de l'\(x\)axe. (Arrondissez la réponse à deux décimales.)

    Réponse
    \(7.21\)unités²

    51) Détermine la longueur de la\(y=\dfrac{x^2}{4}\) courbe\([0,8]\).

    52) Trouvez la longueur de la courbe\(y=e^x\) sur\([0,\,\ln(2)].\)

    Réponse
    \(\left(\sqrt{5}−\sqrt{2}+\ln\Big|\frac{2+2\sqrt{2}}{1+\sqrt{5}}\Big|\right)\)unités

    53) Trouvez l'aire de la surface formée en faisant pivoter le graphique\(y=2\sqrt{x}\) sur l'intervalle\([0,9]\) autour de l'\(x\)axe.

    54) Trouvez la valeur moyenne de la fonction\(f(x)=\dfrac{1}{x^2+1}\) sur l'intervalle\([−3,3].\)

    Réponse
    \(\frac{1}{3}\arctan(3)≈0.416\)

    55) Approximation de la longueur de l'arc de la courbe\(y=\tan πx\) sur l'intervalle\(\left[0,\frac{1}{4}\right]\). (Arrondissez la réponse à la troisième décimale.)