7.2E : Exercices pour la section 7.2
- Page ID
- 197651
Remplissez le champ vide pour faire une déclaration véridique.
1)\(\sin^2x+\) _______\( =1\)
- Réponse
- \(\cos^2x\)
2)\(\sec^2x−1=\) _______
- Réponse
- \(\tan^2x\)
Utilisez une identité pour réduire la puissance de la fonction trigonométrique à une fonction trigonométrique portée à la première puissance.
3)\(\sin^2x=\) _______
- Réponse
- \(\dfrac{1−\cos(2x)}{2}\)
4)\(\cos^2x=\) _______
- Réponse
- \(\dfrac{1+\cos(2x)}{2}\)
Évaluez chacune des intégrales suivantes par\(u\) substitution.
5)\(\displaystyle ∫\sin^3x\cos x\,dx\)
- Réponse
- \(\displaystyle ∫\sin^3x\cos x\,dx \quad = \quad \frac{\sin^4x}{4}+C\)
6)\(\displaystyle ∫\sqrt{\cos x}\sin x\,dx\)
7)\(\displaystyle ∫\tan^5(2x)\sec^2(2x)\,dx\)
- Réponse
- \(\displaystyle ∫\tan^5(2x)\sec^2(2x)\,dx \quad = \quad \tfrac{1}{12}\tan^6(2x)+C\)
8)\(\displaystyle ∫\sin^7(2x)\cos(2x)\,dx\)
9)\(\displaystyle ∫\tan(\frac{x}{2})\sec^2(\frac{x}{2})\,dx\)
- Réponse
- \(\displaystyle ∫\tan(\frac{x}{2})\sec^2(\frac{x}{2})\,dx \quad = \quad \tan^2(\frac{x}{2})+C\)
10)\(\displaystyle ∫\tan^2x\sec^2x\,dx\)
Calculez les intégrales suivantes en utilisant les directives d'intégration des puissances des fonctions trigonométriques. Utilisez un CAS pour vérifier les solutions. (Remarque : certains problèmes peuvent être résolus à l'aide de techniques d'intégration apprises précédemment.)
11)\(\displaystyle ∫\sin^3x\,dx\)
- Réponse
- \(\displaystyle ∫\sin^3x\,dx \quad = \quad −\frac{3\cos x}{4}+\tfrac{1}{12}\cos(3x)+C=−\cos x+\frac{\cos^3x}{3}+C\)
(12)\(\displaystyle ∫\cos^3x\,dx\)
13)\(\displaystyle ∫\sin x\cos x\,dx\)
- Réponse
- \(\displaystyle ∫\sin x\cos x\,dx \quad = \quad −\tfrac{1}{2}\cos^2x+C\)
(14)\(\displaystyle ∫\cos^5x\,dx\)
15)\(\displaystyle ∫\sin^5x\cos^2x\,dx\)
- Réponse
- \(\displaystyle ∫\sin^5x\cos^2x\,dx \quad = \quad −\frac{5\cos x}{64}−\tfrac{1}{192}\cos(3x)+\tfrac{3}{320}\cos(5x)−\tfrac{1}{448}\cos(7x)+C\)
16)\(\displaystyle ∫\sin^3x\cos^3x\,dx\)
17)\(\displaystyle ∫\sqrt{\sin x}\cos x\,dx\)
- Réponse
- \(\displaystyle ∫\sqrt{\sin x}\cos x\,dx \quad = \quad \tfrac{2}{3}(\sin x)^{3/2}+C\)
18)\(\displaystyle ∫\sqrt{\sin x}\cos^3x\,dx\)
19)\(\displaystyle ∫\sec x\tan x\,dx\)
- Réponse
- \(\displaystyle ∫\sec x\tan x\,dx \quad = \quad \sec x+C\)
20)\(\displaystyle ∫\tan(5x)\,dx\)
(21)\(\displaystyle ∫\tan^2x\sec x\,dx\)
- Réponse
- \(\displaystyle ∫\tan^2x\sec x\,dx \quad = \quad \tfrac{1}{2}\sec x\tan x−\tfrac{1}{2}\ln(\sec x+\tan x)+C\)
22)\(\displaystyle ∫\tan x\sec^3x\,dx\)
23)\(\displaystyle ∫\sec^4x\,dx\)
- Réponse
- \(\displaystyle ∫\sec^4x\,dx \quad = \quad \frac{2\tan x}{3}+\tfrac{1}{3}\sec^2 x\tan x=\tan x+\frac{\tan^3x}{3}+C\)
(24)\(\displaystyle ∫\cot x\,dx\)
25)\(\displaystyle ∫\csc x\,dx\)
- Réponse
- \(\displaystyle ∫\csc x\,dx \quad = \quad −\ln|\cot x+\csc x|+C\)
26)\(\displaystyle ∫\frac{\tan^3x}{\sqrt{\sec x}}\,dx\)
Pour les exercices 27 à 28, trouvez une formule générale pour les intégrales.
(27)\(\displaystyle ∫\sin^2ax\cos ax\,dx\)
- Réponse
- \(\displaystyle ∫\sin^2ax\cos ax\,dx \quad = \quad \frac{\sin^3(ax)}{3a}+C\)
28)\(\displaystyle ∫\sin ax\cos ax\,dx.\)
Utilisez les formules à double angle pour évaluer les intégrales dans les exercices 29 à 34.
(29)\(\displaystyle ∫^π_0\sin^2x\,dx\)
- Réponse
- \(\displaystyle ∫^π_0\sin^2x\,dx \quad = \quad \frac{π}{2}\)
30)\(\displaystyle ∫^π_0\sin^4 x\,dx\)
31)\(\displaystyle ∫\cos^2 3x\,dx\)
- Réponse
- \(\displaystyle ∫\cos^2 3x\,dx \quad = \quad \frac{x}{2}+\tfrac{1}{12}\sin(6x)+C\)
32)\(\displaystyle ∫\sin^2x\cos^2x\,dx\)
33)\(\displaystyle ∫\sin^2x\,dx+∫\cos^2x\,dx\)
- Réponse
- \(\displaystyle ∫\sin^2x\,dx+∫\cos^2x\,dx \quad = \quad x+C\)
34)\(\displaystyle ∫\sin^2 x\cos^2(2x)\,dx\)
Pour les exercices 35 à 43, évaluez les intégrales définies. Exprimez les réponses sous une forme exacte chaque fois que possible.
35)\(\displaystyle ∫^{2π}_0\cos x\sin 2x\,dx\)
- Réponse
- \(\displaystyle ∫^{2π}_0\cos x\sin 2x\,dx \quad = \quad 0\)
36)\(\displaystyle ∫^π_0\sin 3x\sin 5x\,dx\)
37)\(\displaystyle ∫^π_0\cos(99x)\sin(101x)\,dx\)
- Réponse
- \(\displaystyle ∫^π_0\cos(99x)\sin(101x)\,dx \quad = \quad 0\)
38)\(\displaystyle ∫^π_{−π}\cos^2(3x)\,dx\)
39)\(\displaystyle ∫^{2π}_0\sin x\sin(2x)\sin(3x)\,dx\)
- Réponse
- \(\displaystyle ∫^{2π}_0\sin x\sin(2x)\sin(3x)\,dx \quad = \quad 0\)
40)\(\displaystyle ∫^{4π}_0\cos(x/2)\sin(x/2)\,dx\)
41)\(\displaystyle ∫^{π/3}_{π/6}\frac{\cos^3x}{\sqrt{\sin x}}\,dx\) (Arrondissez cette réponse à la troisième décimale.)
- Réponse
- \(\displaystyle ∫^{π/3}_{π/6}\frac{\cos^3x}{\sqrt{\sin x}}\,dx \quad \approx \quad 0.239\)
42)\(\displaystyle ∫^{π/3}_{−π/3}\sqrt{\sec^2x−1}\,dx\)
43)\(\displaystyle ∫^{π/2}_0\sqrt{1−\cos(2x)}\,dx\)
- Réponse
- \(\displaystyle ∫^{π/2}_0\sqrt{1−\cos(2x)}\,dx \quad = \quad \sqrt{2}\)
44) Trouvez l'aire de la région délimitée par les graphes des équations\(y=\sin x,\, y=\sin^3x,\, x=0,\) et\(x=\frac{π}{2}.\)
45) Trouvez l'aire de la région délimitée par les graphes des équations\(y=\cos^2x,\, y=\sin^2x,\, x=−\frac{π}{4},\) et\(x=\frac{π}{4}.\)
- Réponse
- \(A = 1 \,\text{unit}^2\)
46) Une particule se déplace en ligne droite avec la fonction de vitesse\(v(t)=\sin(ωt)\cos^2(ωt).\) Trouvez sa fonction de position\(x=f(t)\) si\( f(0)=0.\)
47) Trouvez la valeur moyenne de la fonction\(f(x)=\sin^2x\cos^3x\) sur l'intervalle\([−π,π].\)
- Réponse
- \(0\)
Pour les exercices 48 à 49, résolvez les équations différentielles.
48)\(\dfrac{dy}{\,dx}=\sin^2x.\) La courbe passe par le point\((0,0).\)
49)\(\dfrac{dy}{dθ}=\sin^4(πθ)\)
- Réponse
- \(f(x) = \dfrac{3θ}{8}−\tfrac{1}{4π}\sin(2πθ)+\tfrac{1}{32π}\sin(4πθ)+C\)
50) Trouvez la longueur de la courbe\(y=\ln(\csc x),\, \text{for}\,\tfrac{π}{4}≤x≤\tfrac{π}{2}.\)
51) Trouvez la longueur de la courbe\(y=\ln(\sin x),\, \text{for}\,\tfrac{π}{3}≤x≤\tfrac{π}{2}.\)
- Réponse
- \(s = \ln(\sqrt{3})\)
52) Trouvez le volume généré en faisant tourner la courbe\(y=\cos(3x)\) autour de l'\(x\)axe -, pour\( 0≤x≤\tfrac{π}{36}.\)
Pour les exercices 53 à 54, utilisez ces informations : Le produit interne de deux fonctions\(f\) et\(g\) plus\([a,b]\) est défini par\(\displaystyle f(x)⋅g(x)=⟨f,g⟩=∫^b_af⋅g\,dx.\) Deux fonctions\(g\) distinctes\(f\) et est dit orthogonal si\(⟨f,g⟩=0.\)
53) Afficher ceux qui\({\sin(2x),\, \cos(3x)}\) sont orthogonaux sur l'intervalle\([−π,\, π]\).
- Réponse
- \(\displaystyle ∫^π_{−π}\sin(2x)\cos(3x)\,dx=0\)
54) Évaluer\(\displaystyle ∫^π_{−π}\sin(mx)\cos(nx)\,dx.\)
55) Intégrer\(y′=\sqrt{\tan x}\sec^4x.\)
- Réponse
- \(\displaystyle y = \int \sqrt{\tan x}\sec^4x \, dx \quad = \quad \tfrac{2}{3}\left(\tan x\right)^{3/2} + \tfrac{2}{7}\left(\tan x\right)^{7/2}+C= \tfrac{2}{21}\left(\tan x\right)^{3/2}\left[ 7 + 3\tan^2 x \right]+C\)
Pour chaque paire d'intégrales des exercices 56 à 57, déterminez laquelle est la plus difficile à évaluer. Expliquez votre raisonnement.
56)\(\displaystyle ∫\sin^{456}x\cos x\,dx\) ou\(\displaystyle ∫\sin^2x\cos^2x\,dx\)
57)\(\displaystyle ∫\tan^{350}x\sec^2x\,dx\) ou\(\displaystyle ∫\tan^{350}x\sec x\,dx\)
- Réponse
- La seconde intégrale est plus difficile car la première intégrale est simplement un type de\(u\) substitution.