Skip to main content
Global

10.2:求解和绘制不等式,以及用区间表示法写出答案

  • Page ID
    171328
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    要求解不等式并绘制图表:

    1. 使用上一节中的不等式属性求解不等式。
    2. 在数字线上绘制解决方案集合的图表。
    3. 用间隔表示法写出解集。

    求解不等式,在数字线上绘制解集合图,并用区间表示法显示解集:

    1. \(−1 ≤ 2x − 5 < 7\)
    2. \(x^2 + 7x + 10 < 0\)
    3. \(−6 < x − 2 < 4\)
    解决方案
    1. \(\begin{array} &&−1 ≤ 2x − 5 < 7 &\text{Example problem} \\ &−1 + 5 ≤ 2x − 5 + 5 < 7 + 5 &\text{The goal is to isolate the variable \(x\),所以首先将不等式中的所有三个区域相加\(5\)。}\\ &4 ≤ 2x < 12 &\ text {Simplify。}\\ &\ dfrac {4} {2} ≤ 2x^2 <\ dfrac {4} {2} &\ text {全部除\(2\)以分离变量\(x\)。}\\ &2 ≤ x < 6 &\ text {最终答案写于不等式/解决方案集合形式。}\\ & [2, 6) &\ text {用区间表示法写的最终答案(更多详情请参阅间隔符号部分)}\ end {array}\)

    clipboard_efc0262004238b3445893f014c353f830.png

    1. \(\begin{array} &&x^2 + 7x + 10 < 0 &\text{Example problem} \\ &(x + 5)(x + 2) < 0 &\text{Factor the polynomial.} \\ &(x + 5)(x + 2) < 0 &\text{The product must be less than \(0\),这意味着如果\((x + 5) > 0\),那么\((x + 2) < 0\)。 同样,if\((x + 5) < 0\),那么\((x + 2) > 0\)。}\\ & (x + 5) > 0 (x + 2) < 0 &\ text {Find the intersection of each of these inequalities.}\\ &x > −5 x < −2 &\ text {找出每个不等式的交点。} \ end {array}\)
    clipboard_e1db3296d32ab4a7d251b8253c3b147d0.png
    解决方案设置为\(x > −5\)
    clipboard_e9ed6522e3f219b2195a81e9a9f3a9253.png
    解决方案设置为\(x − 2\)

    \(\begin{array} &&\;\;\;−5 < x < −2 \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;&\text{Final answer written in inequality/solution set form.} \\ &\;\;\;(−5, −2) \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;&\text{Final answer written in interval notation (see section on Interval Notation for more details).} \end{array}\)

    1. \(\begin{array}&&−6 < x − 2 ≤ 4 &\text{Example problem} \\ &−6 + 2 < x − 2 + 2 ≤ 4 + 2 &\text{The goal is to isolate the variable \(x\),所以首先将不等式中的所有三个区域相加\(2\)。}\\ &−4 < x ≤ 6 &\ text {以不等式/解集形式写的最终答案。}\\ & (−4, 6] &\ text {用区间表示法写的最终答案(更多详情请参阅间隔表示法部分)。} \ end {array}\)

    clipboard_e61db0750eee74347f74804dbd4b7221a.png

    求解不等式,在数字线上绘制解集合图,并用区间表示法显示解集:

    1. \(0 ≤ x + 1 ≤ 4\)
    2. \(0 < 2(x − 1) ≤ 4\)
    3. \(6 < 2(x − 1) < 12\)
    4. \(x^2 − 6x − 16 < 0\)
    5. \(2x^2 − x − 15 > 0\)