Skip to main content
Global

2.4: 应用示例

  • Page ID
    171177
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    在本节中,应用距离公式\(d = \sqrt{(x_2 − x_1) ^2 + (y_2 − y_1) ^2}\)来计算线段的长度。

    注意:三个点\(A\)\(B\)、和\(C\)是共线的,换句话说,如果连接两点的任意两条线段的长度之和等于剩余线段的长度,则这三个点位于同一条线上。 即、\(AB + BC = AC\)\(AB + BC = AC\)或、\(AB + AC = BC\)\(AC + BC = AB\)

    确定给定的三个点是否共线。

    \(A(10, −4)\quad B(8, −2) \quad C(2, 4)\)

    解决方案

    首先找到分段\(AB\)\(BC\)、和\(AC\)。 为此,请找出点与\(B\)\(A\)\(B\)\(A\)\(C\)、之间的距离\(C\)

    \(\begin{aligned} \text{Segment AB }&=\text{ The distance between point A and Point B } \\ &= \sqrt{(8 − 10)^2 + [−2 − (−4)]^2} \\ &= \sqrt{(−2)^2 + (2)^2} \\&= \sqrt{ 8}\\&= 2\sqrt{2} \end{aligned}\)

    \(\begin{aligned} \text{Segment BC }&=\text{ The distance between point B and Point C } \\ &= \sqrt{(2 − 8)^2 + [4 − (−2)]^2 }\\ &= \sqrt{(−6)^2 + (6)^2} \\&= \sqrt{ 72 }\\&= 6\sqrt{ 2}\end{aligned}\)

    \(\begin{aligned} \text{Segment AC }&=\text{ The distance between point A and Point C }\\&= \sqrt{(2 − 10)^2 + [4 − (−4)]^2} \\&= \sqrt{(−8)^2 + (8)^2 }\\&= \sqrt{ 128 }\\&= 8\sqrt{ 2}\end{aligned}\)

    因此,

    \(\begin{aligned} AB + BC &= 2\sqrt{ 2} + 6\sqrt{ 2 }\\&= 8\sqrt{ 2 } \\&= AC \end{aligned}\)

    既然如此,\(AB + BC = AC\)那么三个点是共线的。

    1. 确定以下几点是否共线。
      1. \(A(4,-1)\quad B(5,-2) \quad C(1,2)\)
      2. \(A(2,-2)\quad B(3,1)\quad C(2,1)\)