Jupyter_Widgets
- Last updated
- Save as PDF
- Page ID
- 164137
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)
Matplotlib
%matplotlib widget import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation # Fixing random state for reproducibility np.random.seed(19680801) def gen_rand_line(length, dims=2): """ Create a line using a random walk algorithm. Parameters ---------- length : int The number of points of the line. dims : int The number of dimensions of the line. """ line_data = np.empty((dims, length)) line_data[:, 0] = np.random.rand(dims) for index in range(1, length): # scaling the random numbers by 0.1 so # movement is small compared to position. # subtraction by 0.5 is to change the range to [-0.5, 0.5] # to allow a line to move backwards. step = (np.random.rand(dims) - 0.5) * 0.1 line_data[:, index] = line_data[:, index - 1] + step return line_data def update_lines(num, data_lines, lines): for line, data in zip(lines, data_lines): # NOTE: there is no .set_data() for 3 dim data... line.set_data(data[0:2, :num]) line.set_3d_properties(data[2, :num]) return lines # Attaching 3D axis to the figure fig = plt.figure() ax = fig.add_subplot(projection="3d") # Fifty lines of random 3-D lines data = [gen_rand_line(25, 3) for index in range(50)] # Creating fifty line objects. # NOTE: Can't pass empty arrays into 3d version of plot() lines = [ax.plot(dat[0, 0:1], dat[1, 0:1], dat[2, 0:1])[0] for dat in data] # Setting the axes properties ax.set_xlim3d([0.0, 1.0]) ax.set_xlabel('X') ax.set_ylim3d([0.0, 1.0]) ax.set_ylabel('Y') ax.set_zlim3d([0.0, 1.0]) ax.set_zlabel('Z') ax.set_title('3D Test') # Creating the Animation object line_ani = animation.FuncAnimation( fig, update_lines, 50, fargs=(data, lines), interval=50) plt.show()
Bqplot
import numpy as np from bqplot import pyplot as plt size = 100 np.random.seed(0) x_data = np.arange(size) y_data = np.cumsum(np.random.randn(size) * 100.0) plt.figure(title='My First Plot') plt.plot(x_data, y_data) plt.show()
Plotly
import plotly.express as px df = px.data.tips() fig = px.histogram(df, x="total_bill", y="tip", color="sex", marginal="rug", hover_data=df.columns) fig.show()
Ipyvolume
import numpy as np import ipyvolume as ipv V = np.zeros((128,128,128)) # our 3d array # outer box V[30:-30,30:-30,30:-30] = 0.75 V[35:-35,35:-35,35:-35] = 0.0 # inner box V[50:-50,50:-50,50:-50] = 0.25 V[55:-55,55:-55,55:-55] = 0.0 ipv.quickvolshow(V, level=[0.25, 0.75], opacity=0.03, level_width=0.1, data_min=0, data_max=1)
nglview
import nglview as nv view = nv.show_structure_file(nv.datafiles.PDB) view
Ipytcytoscape
import ipycytoscape data = { 'nodes': [ { 'data': { 'id': 'desktop', 'name': 'Cytoscape', 'href': 'http://cytoscape.org' } }, { 'data': { 'id': 'a', 'name': 'Grid', 'href': 'http://cytoscape.org' } }, { 'data': { 'id': 'b', 'name': 'Cola', 'href': 'http://cytoscape.org' } }, { 'data': { 'id': 'c', 'name': 'Popper', 'href': 'http://cytoscape.org' } }, { 'data': { 'id': 'js', 'name': 'Cytoscape.js', 'href': 'http://js.cytoscape.org' } } ], 'edges': [ {'data': { 'source': 'desktop', 'target': 'js' }}, {'data': { 'source': 'a', 'target': 'b' }}, {'data': { 'source': 'a', 'target': 'c' }}, {'data': { 'source': 'b', 'target': 'c' }}, {'data': { 'source': 'js', 'target': 'b' }} ] } cytoscapeobj = ipycytoscape.CytoscapeWidget() cytoscapeobj.graph.add_graph_from_json(data) cytoscapeobj.set_style([{ 'selector': 'node', 'css': { 'content': 'data(name)', 'text-valign': 'center', 'color': 'white', 'text-outline-width': 2, 'text-outline-color': 'green', 'background-color': 'green' } }, { 'selector': ':selected', 'css': { 'background-color': 'black', 'line-color': 'black', 'target-arrow-color': 'black', 'source-arrow-color': 'black', 'text-outline-color': 'black' }} ]) cytoscapeobj
Pythreejs
from pythreejs import * from IPython.display import display import ipywidgets # Reduce repo churn for examples with embedded state: from pythreejs._example_helper import use_example_model_ids use_example_model_ids() ball = Mesh(geometry=SphereGeometry(), material=MeshLambertMaterial(color='red')) key_light = DirectionalLight(color='white', position=[3, 5, 1], intensity=0.5) c = PerspectiveCamera(position=[0, 5, 5], up=[0, 1, 0], children=[key_light]) scene = Scene(children=[ball, c, AmbientLight(color='#777777')], background=None) renderer = Renderer(camera=c, scene=scene, alpha=True, clearOpacity=0, controls=[OrbitControls(controlling=c)]) display(renderer)
from pythreejs import * import ipywidgets from IPython.display import display # Reduce repo churn for examples with embedded state: from pythreejs._example_helper import use_example_model_ids use_example_model_ids() view_width = 600 view_height = 400 sphere = Mesh( SphereBufferGeometry(1, 32, 16), MeshStandardMaterial(color='red') ) cube = Mesh( BoxBufferGeometry(1, 1, 1), MeshPhysicalMaterial(color='green'), position=[2, 0, 4] ) camera = PerspectiveCamera( position=[10, 6, 10], aspect=view_width/view_height) key_light = DirectionalLight(position=[0, 10, 10]) ambient_light = AmbientLight() positon_track = VectorKeyframeTrack(name='.position', times=[0, 2, 5], values=[10, 6, 10, 6.3, 3.78, 6.3, -2.98, 0.84, 9.2, ]) rotation_track = QuaternionKeyframeTrack(name='.quaternion', times=[0, 2, 5], values=[-0.184, 0.375, 0.0762, 0.905, -0.184, 0.375, 0.0762, 0.905, -0.0430, -0.156, -0.00681, 0.987, ]) camera_clip = AnimationClip(tracks=[positon_track, rotation_track]) camera_action = AnimationAction(AnimationMixer(camera), camera_clip, camera) scene = Scene(children=[sphere, cube, camera, key_light, ambient_light]) controller = OrbitControls(controlling=camera) renderer = Renderer(camera=camera, scene=scene, controls=[controller], width=view_width, height=view_height) renderer
camera_action
from pythreejs import * from IPython.display import display # Materials mat = MeshStandardMaterial(color='#ff0000') mat_green = MeshStandardMaterial(color='#00ff00') mat_blue = MeshStandardMaterial(color='#0000ff') # Geometries torus = TorusGeometry(radius=12, tube=3, radialSegments=16, tubularSegments=100) sphere = SphereGeometry(radius=12, _flat=True) bufferSphere = SphereBufferGeometry(radius=12, _flat=True) bufferTorus = TorusBufferGeometry(radius=12, tube=3, radialSegments=16, tubularSegments=100) sphere bufferSphere
Ipyleaflet
from ipyleaflet import Map, TileLayer, basemaps from ipyleaflet.velocity import Velocity import xarray as xr import os if not os.path.exists('wind-global.nc'): url = 'https://github.com/benbovy/xvelmap/raw/master/notebooks/wind-global.nc' import requests r = requests.get(url) wind_data = r.content with open('wind-global.nc', 'wb') as f: f.write(wind_data) center = [0, 0] zoom = 1 m = Map(center=center, zoom=zoom, interpolation='nearest', basemap=basemaps.CartoDB.DarkMatter) ds = xr.open_dataset('wind-global.nc') display_options = { 'velocityType': 'Global Wind', 'displayPosition': 'bottomleft', 'displayEmptyString': 'No wind data' } wind = Velocity(data=ds, zonal_speed='u_wind', meridional_speed='v_wind', latitude_dimension='lat', longitude_dimension='lon', velocity_scale=0.01, max_velocity=20, display_options=display_options) m.add_layer(wind) m
Pandas
import pandas as pd iris = pd.read_csv('https://raw.githubusercontent.com/mwaskom/seaborn-data/master/iris.csv') iris
bqplot
#You can scroll this code! import pandas as pd import numpy as np import os from bqplot import ( LogScale, LinearScale, OrdinalColorScale, ColorAxis, Axis, Scatter, Lines, CATEGORY10, Label, Figure, Tooltip ) from ipywidgets import HBox, VBox, IntSlider, Play, jslink initial_year = 1800 data = pd.read_json('https://raw.githubusercontent.com/bqplot/bqplot/958b0679cbccbc1411688cc6f8a5a22642377c68/examples/Applications/Wealth%20Of%20Nations/nations.json') def clean_data(data): for column in ['income', 'lifeExpectancy', 'population']: data = data.drop(data[data[column].apply(len) <= 4].index) return data def extrap_interp(data): data = np.array(data) x_range = np.arange(1800, 2009, 1.) y_range = np.interp(x_range, data[:, 0], data[:, 1]) return y_range def extrap_data(data): for column in ['income', 'lifeExpectancy', 'population']: data[column] = data[column].apply(extrap_interp) return data data = clean_data(data) data = extrap_data(data) income_min, income_max = np.min(data['income'].apply(np.min)), np.max(data['income'].apply(np.max)) life_exp_min, life_exp_max = np.min(data['lifeExpectancy'].apply(np.min)), np.max(data['lifeExpectancy'].apply(np.max)) pop_min, pop_max = np.min(data['population'].apply(np.min)), np.max(data['population'].apply(np.max)) def get_data(year): year_index = year - 1800 income = data['income'].apply(lambda x: x[year_index]) life_exp = data['lifeExpectancy'].apply(lambda x: x[year_index]) pop = data['population'].apply(lambda x: x[year_index]) return income, life_exp, pop tt = Tooltip(fields=['name', 'x', 'y'], labels=['Country Name', 'Income per Capita', 'Life Expectancy']) year_label = Label(x=[0.75], y=[0.10], default_size=46, font_weight='bolder', colors=['orange'], text=[str(initial_year)], enable_move=True) x_sc = LogScale(min=income_min, max=income_max) y_sc = LinearScale(min=life_exp_min, max=life_exp_max) c_sc = OrdinalColorScale(domain=data['region'].unique().tolist(), colors=CATEGORY10[:6]) size_sc = LinearScale(min=pop_min, max=pop_max) ax_y = Axis(label='Life Expectancy', scale=y_sc, orientation='vertical', side='left', grid_lines='solid') ax_x = Axis(label='Income per Capita', scale=x_sc, grid_lines='solid') # Start with the first year's data cap_income, life_exp, pop = get_data(initial_year) wealth_scat = Scatter(x=cap_income, y=life_exp, color=data['region'], size=pop, names=data['name'], display_names=False, scales={'x': x_sc, 'y': y_sc, 'color': c_sc, 'size': size_sc}, default_size=4112, tooltip=tt, animate=True, stroke='Black', unhovered_style={'opacity': 0.5}) nation_line = Lines(x=data['income'][0], y=data['lifeExpectancy'][0], colors=['Gray'], scales={'x': x_sc, 'y': y_sc}, visible=False) time_interval = 10 fig = Figure(marks=[wealth_scat, year_label, nation_line], axes=[ax_x, ax_y], title='Health and Wealth of Nations', animation_duration=time_interval) year_slider = IntSlider(min=1800, max=2008, step=1, description='Year', value=initial_year) def hover_changed(change): if change.new is not None: nation_line.x = data[data['name'] == wealth_scat.names[change.new]]['income'].values[0] nation_line.y = data[data['name'] == wealth_scat.names[change.new]]['lifeExpectancy'].values[0] nation_line.visible = True else: nation_line.visible = False wealth_scat.observe(hover_changed, 'hovered_point') def year_changed(change): wealth_scat.x, wealth_scat.y, wealth_scat.size = get_data(year_slider.value) year_label.text = [str(year_slider.value)] year_slider.observe(year_changed, 'value') play_button = Play(min=1800, max=2008, interval=time_interval) jslink((play_button, 'value'), (year_slider, 'value')) VBox([HBox([play_button, year_slider]), fig])
Bokeh
import numpy as np from scipy.integrate import odeint from bokeh.plotting import figure, output_file, show sigma = 10 rho = 28 beta = 8.0/3 theta = 3 * np.pi / 4 def lorenz(xyz, t): x, y, z = xyz x_dot = sigma * (y - x) y_dot = x * rho - x * z - y z_dot = x * y - beta* z return [x_dot, y_dot, z_dot] initial = (-10, -7, 35) t = np.arange(0, 100, 0.006) solution = odeint(lorenz, initial, t) x = solution[:, 0] y = solution[:, 1] z = solution[:, 2] xprime = np.cos(theta) * x - np.sin(theta) * y colors = ["#C6DBEF", "#9ECAE1", "#6BAED6", "#4292C6", "#2171B5", "#08519C", "#08306B",] p = figure(title="Lorenz attractor example", background_fill_color="#fafafa") p.multi_line(np.array_split(xprime, 7), np.array_split(z, 7), line_color=colors, line_alpha=0.8, line_width=1.5) output_file("lorenz.html", title="lorenz.py example") show(p)