Skip to main content
Global

4.6: Ulinganisho wa Kielelezo na Logarithmic

  • Page ID
    181209
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Malengo ya kujifunza
    • Tumia kama besi kutatua equations kielelezo.
    • Tumia logarithms kutatua usawa wa kielelezo.
    • Tumia ufafanuzi wa logarithm kutatua usawa wa logarithmic.
    • Tumia mali moja kwa moja ya logarithms kutatua equations logarithmic.
    • Tatua matatizo yaliyotumika yanayohusisha usawa wa kielelezo na wa logarithmic.

    Mwaka 1859, mmiliki wa ardhi wa Australia aitwaye Thomas Austin alitoa\(24\) sungura katika pori kwa uwindaji. Kwa sababu Australia ilikuwa na wadudu wachache na chakula cha kutosha, idadi ya sungura ililipuka. Katika chini ya miaka kumi, idadi ya sungura imehesabiwa katika mamilioni.

    Sungura saba mbele ya jengo la matofali.
    Kielelezo\(\PageIndex{1}\): Sungura pori nchini Australia. Idadi ya sungura ilikua haraka sana nchini Australia kiasi kwamba tukio hilo lilijulikana kama “pigo la sungura.” (mikopo: Richard Taylor, Flickr)

    Ukuaji wa idadi ya watu usio na udhibiti, kama katika sungura za mwitu nchini Australia, unaweza kuonyeshwa na kazi za kielelezo. Ulinganifu unaosababishwa na kazi hizo za kielelezo zinaweza kutatuliwa kuchambua na kufanya utabiri kuhusu ukuaji wa kielelezo. Katika sehemu hii, tutajifunza mbinu za kutatua kazi za kielelezo.

    Kutumia kama misingi ya kutatua Ulinganisho wa Kielelezo

    Mbinu ya kwanza inahusisha kazi mbili na besi kama hizo. Kumbuka kwamba mali moja kwa moja ya kazi kielelezo inatuambia kwamba, kwa idadi yoyote halisi\(b\),\(S\), na\(T\), wapi\(b>0\)\(b≠1\),\(b^S=b^T\) kama na tu kama\(S=T\).

    Kwa maneno mengine, wakati equation ya kielelezo ina msingi sawa kila upande, vielelezo lazima wawe sawa. Hii inatumika pia wakati exponents ni maneno algebraic. Kwa hiyo, tunaweza kutatua equations nyingi za kielelezo kwa kutumia sheria za vielelezo kuandika upya kila upande kama nguvu na msingi sawa. Kisha, sisi kutumia ukweli kwamba kazi kielelezo ni moja kwa moja kuweka exponents sawa na mtu mwingine, na kutatua kwa haijulikani.

    Kwa mfano, fikiria equation\(3^{4x−7}=\dfrac{3^{2x}}{3}\). Kutatua kwa\(x\), sisi kutumia mgawanyiko mali ya exponents kuandika upya upande wa kulia ili pande zote mbili na msingi ya kawaida,\(3\). Kisha sisi kuomba mali moja kwa moja ya exponents kwa kuweka exponents sawa na mtu mwingine na kutatua kwa\(x\):

    \[\begin{align*} 3^{4x-7}&= \dfrac{3^{2x}}{3}\\ 3^{4x-7}&= \dfrac{3^{2x}}{3^1} \qquad &&\text{Rewrite 3 as } 3^1\\ 3^{4x-7}&= 3^{2x-1} \qquad &&\text{Use the division property of exponents}\\ 4x-7&= 2x-1 \qquad &&\text{Apply the one-to-one property of exponents}\\ 2x&= 6 \qquad &&\text{Subtract 2x and add 7 to both sides}\\ x&= 3 \qquad &&\text{Divide by 3} \end{align*}\]

    KUTUMIA MALI MOJA KWA MOJA YA KAZI ZA KIELELEZO KUTATUA USAWA WA KIELELEZO

    Kwa maneno yoyote ya algebraic\(S\) na\(T\), na nambari yoyote halisi\(b≠1\),

    \[\begin{align} b^S=b^T\text{ if and only if } S=T \end{align}\]

    Jinsi ya: Kutokana na equation kielelezo na fomu\(b^S=b^T\), where \(S\) and \(T\) are algebraic expressions with an unknown, solve for the unknown.
    1. Tumia sheria za watazamaji ili kurahisisha, ikiwa ni lazima, ili equation inayosababisha ina fomu\(b^S=b^T\).
    2. Tumia mali moja kwa moja ili kuweka vielelezo sawa.
    3. Kutatua equation kusababisha,\(S=T\), kwa haijulikani.
    Mfano\(\PageIndex{1}\): Solving an Exponential Equation with a Common Base

    Kutatua\(2^{x−1}=2^{2x−4}\).

    Suluhisho

    \[\begin{align*} 2^{x-1}&= 2^{2x-4} \qquad &&\text{The common base is 2}\\ x-1&= 2x-4 \qquad &&\text{By the one-to-one property the exponents must be equal}\\ x&= 3 \qquad &&\text{Solve for x} \end{align*}\]

    Zoezi\(\PageIndex{1}\)

    Kutatua\(5^{2x}=5^{3x+2}\).

    Jibu

    \(x=−2\)

    Rejesha equations Hivyo Nguvu zote zina Msingi sawa

    Wakati mwingine msingi wa kawaida kwa equation kielelezo si wazi umeonyesha. Katika kesi hizi, sisi tu kuandika upya maneno katika equation kama nguvu na msingi wa kawaida, na kutatua kutumia mali moja kwa moja.

    Kwa mfano, fikiria equation\(256=4^{x−5}\). Tunaweza kuandika upya pande zote mbili za equation hii kama nguvu ya\(2\). Kisha tunatumia sheria za watetezi, pamoja na mali moja kwa moja, kutatua kwa\(x\):

    \[\begin{align*} 256&= 4^{x-5}\\ 2^8&= {(2^2)}^{x-5} \qquad &&\text{Rewrite each side as a power with base 2}\\ 2^8&= 2^{2x-10} \qquad &&\text{Use the one-to-one property of exponents}\\ 8&= 2x-10 \qquad &&\text{Apply the one-to-one property of exponents}\\ 18&= 2x \qquad &&\text{Add 10 to both sides}\\ x&= 9 \qquad &&\text{Divide by 2} \end{align*}\]

    Jinsi ya: Kutokana na usawa wa kielelezo na misingi tofauti, tumia mali moja kwa moja ili kuitatua.
    1. Andika upya kila upande katika equation kama nguvu na msingi wa kawaida.
    2. Tumia sheria za watazamaji ili kurahisisha, ikiwa ni lazima, ili equation inayosababisha ina fomu\(b^S=b^T\).
    3. Tumia mali moja kwa moja ili kuweka vielelezo sawa.
    4. Kutatua equation kusababisha,\(S=T\), kwa haijulikani.
    Mfano\(\PageIndex{2}\): Solving Equations by Rewriting Them to Have a Common Base

    Kutatua\(8^{x+2}={16}^{x+1}\).

    Suluhisho

    \[\begin{align*} 8^{x+2}&= {16}^{x+1}\\ {(2^3)}^{x+2}&= {(2^4)}^{x+1} \qquad &&\text{Write 8 and 16 as powers of 2}\\ 2^{3x+6}&= 2^{4x+4} \qquad &&\text{To take a power of a power, multiply exponents}\\ 3x+6&= 4x+4 \qquad &&\text{Use the one-to-one property to set the exponents equal}\\ x&= 2 \qquad &&\text{Solve for x} \end{align*}\]

    Zoezi\(\PageIndex{2}\)

    Kutatua\(5^{2x}={25}^{3x+2}\).

    Jibu

    \(x=−1\)

    Mfano\(\PageIndex{3}\): Solving Equations by Rewriting Roots with Fractional Exponents to Have a Common Base

    Kutatua\(2^{5x}=\sqrt{2}\).

    Suluhisho

    \[\begin{align*} 2^{5x}&= 2^{\frac{1}{2}} \qquad &&\text{Write the square root of 2 as a power of 2}\\ 5x&= \dfrac{1}{2} \qquad &&\text{Use the one-to-one property}\\ x&= \dfrac{1}{10} \qquad &&\text{Solve for x} \end{align*}\]

    Zoezi\(\PageIndex{3}\)

    Kutatua\(5^x=\sqrt{5}\).

    Jibu

    \(x=\dfrac{1}{2}\)

    Q & A: Je, milinganyo yote ya kielelezo ina suluhisho? Ikiwa sio, tunawezaje kujua ikiwa kuna suluhisho wakati wa mchakato wa kutatua matatizo?

    Hapana. Kumbuka kwamba aina mbalimbali ya kazi ya kielelezo daima ni chanya. Wakati kutatua equation, tunaweza kupata usemi kwamba ni undefined.

    Mfano\(\PageIndex{4}\): Solving an Equation with Positive and Negative Powers

    Kutatua\(3^{x+1}=−2\).

    Suluhisho

    Equation hii haina ufumbuzi. Hakuna thamani halisi ya\(x\) kwamba kufanya equation taarifa ya kweli kwa sababu nguvu yoyote ya idadi chanya ni chanya.

    Uchambuzi

    Kielelezo\(\PageIndex{2}\) inaonyesha kwamba grafu mbili hazivuka hivyo upande wa kushoto hauwezi sawa na upande wa kulia. Hivyo equation haina ufumbuzi.

    Grafu ya 3^ (x+1) =-2 na y=-2. Graph inabainisha kwamba hawana msalaba.
    Kielelezo\(\PageIndex{2}\)
    Zoezi\(\PageIndex{4}\)

    Kutatua\(2^x=−100\).

    Jibu

    Equation haina ufumbuzi.

    Kutatua Ulinganisho wa Kielelezo Kutumia Logarithms

    Wakati mwingine maneno ya equation ya kielelezo haiwezi kuandikwa upya kwa msingi wa kawaida. Katika kesi hizi, tunatatua kwa kuchukua logarithm ya kila upande. Kumbuka, tangu\(\log(a)=\log(b)\) ni sawa na\(a=b\), tunaweza kutumia logarithms na msingi huo pande zote mbili za equation kielelezo.

    Jinsi ya: Kutokana na equation kielelezo ambayo msingi wa kawaida hauwezi kupatikana, kutatua kwa haijulikani
    1. Tumia logarithm ya pande zote mbili za equation.
      • Ikiwa moja ya maneno katika equation ina msingi 10, tumia logarithm ya kawaida.
      • Ikiwa hakuna maneno katika equation ina msingi 10, tumia logarithm ya asili.
    2. Tumia sheria za logarithms kutatua kwa haijulikani.
    Mfano\(\PageIndex{5}\): Solving an Equation Containing Powers of Different Bases

    Kutatua\(5^{x+2}=4^x\).

    Suluhisho

    \ [kuanza {align*}
    5^ {x+2} &= 4 ^ x\ qquad &\ maandishi {Hakuna njia rahisi ya kupata nguvu ya kuwa na msingi sawa}\\ ln5^ {x+2} &=\ ln4 ^ x\ qquad &&\ maandishi {Chukua
    ln ya pande zote mbili}\\ (x+2)\ ln5&= x\ ln4\ qquad &&\ maandishi {Chukua ln ya pande zote mbili}\\
    (x+2)\ ln5&= x\ ln4\ qquad &&\ maandishi {Chukua ln ya pande zote mbili}\\ (x+2 sheria ya magogo}\\
    x\ ln5+2\ ln5&= x\ ln4\ qquad &&\ maandishi {Tumia sheria ya usambazaji}\\
    x\ ln5-x\ ln4&= -2\ ln5\ quad &&\ maandishi {Pata maneno yaliyo na x upande mmoja, maneno bila x kwa upande mwingine}\\
    x (\ ln5-\ ln4) &= -2\ ln5\ qquad &\ maandishi {Kwa upande wa kushoto upande, sababu nje x} \\
    x\ ln\ kushoto (\ dfrac {5} {4}\ kulia) &=\ ln\ kushoto (\ dfrac {1} {25}\ haki)\ quad &\ maandishi {Tumia sheria za magogo}\\
    x&=\ dfrac {\ ln\ kushoto (\ dfrac {1} {25}\ haki)} {\ ln\ kushoto (\ dfrac {1} {25}\ haki)} {\ ln\ kushoto (\ dfrac {1} {25}\ haki)} {\ ln\ kushoto (\ dfrac {1} {25}\ haki)} 5} {4}\ haki)}\ quad &\ maandishi {Gawanya kwa mgawo wa x}
    \ mwisho { sawa*}\]

    Zoezi\(\PageIndex{5}\)

    Kutatua\(2^x=3^{x+1}\).

    Jibu

    \(x=\dfrac{\ln3}{\ln \left (\dfrac{2}{3} \right )}\)

    Q & A: Je, kuna njia yoyote ya kutatua\(2^x=3^x\)?

    Ndiyo. Suluhisho ni\(0\).

    Equations zenye\(e\)

    Aina moja ya kawaida ya equations kielelezo ni wale walio na msingi\(e\). Hii mara kwa mara hutokea tena na tena katika asili, katika hisabati, katika sayansi, katika uhandisi, na katika fedha. Wakati tuna equation na msingi\(e\) upande wowote, tunaweza kutumia logarithm asili kutatua hilo.

    Jinsi ya: Kutokana na equation ya fomu\(y=Ae^{kt}\), solve for \(t\).
    1. Gawanya pande zote mbili za equation na\(A\).
    2. Tumia logarithm ya asili ya pande zote mbili za equation.
    3. Gawanya pande zote mbili za equation na\(k\).
    Mfano\(\PageIndex{6}\): Solve an Equation of the Form \(y = Ae^{kt}\)

    Kutatua\(100=20e^{2t}\).

    Suluhisho

    \[\begin{align*} 100&= 20e^{2t}\\ 5&= e^{2t} \qquad &&\text{Divide by the coefficient of the power}\\ \ln5&= 2t \qquad &&\text{Take ln of both sides. Use the fact that } ln(x) \text{ and } e^x \text{ are inverse functions}\\ t&= \dfrac{\ln5}{2} \qquad &&\text{Divide by the coefficient of t} \end{align*}\]

    Uchambuzi

    Kutumia sheria za magogo, tunaweza pia kuandika jibu hili kwa fomu\(t=\ln\sqrt{5}\). Kama tunataka makadirio decimal ya jibu, tunatumia calculator.

    Zoezi\(\PageIndex{6}\)

    Kutatua\(3e^{0.5t}=11\).

    Jibu

    \(t=2\ln \left (\dfrac{11}{3} \right )\)au\(\ln{ \left (\dfrac{11}{3} \right )}^2\)

    Q & A: Je, kila equation ya fomu\(y=Ae^{kt}\) have a solution?

    Hapana. Kuna ufumbuzi wakati\(k≠0\), na wakati\(y\) na\(A\) ni ama wote 0 au wala 0, na wana ishara sawa. Mfano wa equation na fomu hii ambayo haina ufumbuzi ni\(2=−3e^t\).

    Mfano\(\PageIndex{7}\): Solving an Equation That Can Be Simplified to the Form \(y=Ae^{kt}\)

    Kutatua\(4e^{2x}+5=12\).

    Suluhisho

    \[\begin{align*} 4e^{2x}+5&= 12\\ 4e^{2x}&= 7 \qquad &&\text{Combine like terms}\\ e^{2x}&= \dfrac{7}{4} \qquad &&\text{Divide by the coefficient of the power}\\ 2x&= \ln \left (\dfrac{7}{4} \right ) \qquad &&\text{Take ln of both sides}\\ x&= \dfrac{1}{2}\ln \left (\dfrac{7}{4} \right ) \qquad &&\text{Solve for x} \end{align*}\]

    Zoezi\(\PageIndex{7}\)

    Kutatua\(3+e^{2t}=7e^{2t}\).

    Jibu

    \(t=\ln \left (\dfrac{1}{\sqrt{2}} \right )=−\dfrac{1}{2}\ln(2)\)

    Ufumbuzi wa nje

    Wakati mwingine mbinu zinazotumiwa kutatua equation zinaanzisha suluhisho la nje, ambalo ni suluhisho ambalo ni sahihi algebraically lakini haikidhi masharti ya equation ya awali. Hali moja hiyo inatokea katika kutatua wakati logarithm inachukuliwa pande zote mbili za equation. Katika hali hiyo, kumbuka kwamba hoja ya logarithm lazima iwe chanya. Ikiwa nambari tunayopima katika kazi ya logarithm ni hasi, hakuna pato.

    Mfano\(\PageIndex{8}\): Solving Exponential Functions in Quadratic Form

    Kutatua\(e^{2x}−e^x=56\).

    Suluhisho

    \[\begin{align*} e^{2x}-e^x&= 56\\ e^{2x}-e^x-56&= 0 \qquad &&\text{Get one side of the equation equal to zero}\\ (e^x+7)(e^x-8)&= 0 \qquad &&\text{Factor by the FOIL method}\\ e^x+7&= 0 \qquad &&\text{or} \\ e^x-8&= 0 \qquad &&\text{If a product is zero, then one factor must be zero}\\ e^x&= -7 \qquad &&\text{or} \\ e^x&= 8 \qquad &&\text{Isolate the exponentials}\\ e^x&= 8 \qquad &&\text{Reject the equation in which the power equals a negative number}\\ x&= \ln8 \qquad &&\text{Solve the equation in which the power equals a positive number} \end{align*}\]

    Uchambuzi

    Wakati sisi mpango wa kutumia factoring kutatua tatizo, sisi daima kupata sifuri upande mmoja wa equation, kwa sababu sifuri ina mali ya kipekee kwamba wakati bidhaa ni sifuri, moja au wote wa mambo lazima sifuri. Sisi kukataa equation\(e^x=−7\) kwa sababu idadi chanya kamwe sawa idadi hasi. Suluhisho\(\ln(−7)\) sio namba halisi, na katika mfumo halisi wa namba hii suluhisho linakataliwa kama suluhisho la nje.

    Zoezi\(\PageIndex{8}\)

    Kutatua\(e^{2x}=e^x+2\).

    Jibu

    \(x=\ln2\)

    Q & A: Je, kila equation logarithmic ina suluhisho?

    Hapana. Kumbuka kwamba tunaweza tu kutumia logarithm kwa idadi nzuri. Daima angalia ufumbuzi wa nje.

    Kutumia Ufafanuzi wa Logarithm kutatua Ulinganisho wa Logarithmic

    Tayari tumeona kwamba kila equation logarithmic\({\log}_b(x)=y\) ni sawa na equation kielelezo\(b^y=x\). Tunaweza kutumia ukweli huu, pamoja na sheria za logarithms, kutatua equations logarithmic ambapo hoja ni kujieleza algebraic.

    Kwa mfano, fikiria equation\({\log}_2(2)+{\log}_2(3x−5)=3\). Ili kutatua equation hii, tunaweza kutumia sheria za logarithms kuandika upya upande wa kushoto katika fomu ya kompakt na kisha kutumia ufafanuzi wa magogo kutatua kwa\(x\):

    \[\begin{align*} {\log}_2(2)+{\log}_2(3x-5)&= 3\\ {\log}_2(2(3x-5))&= 3 \qquad \text{Apply the product rule of logarithms}\\ {\log}_2(6x-10)&= 3 \qquad \text{Distribute}\\ 2^3&= 6x-10 \qquad \text{Apply the definition of a logarithm}\\ 8&= 6x-10 \qquad \text{Calculate } 2^3\\ 18&= 6x \qquad \text{Add 10 to both sides}\\ x&= 3 \qquad \text{Divide by 6} \end{align*}\]

    KUTUMIA UFAFANUZI WA LOGARITHM KUTATUA USAWA WA LOGARITHMIC

    Kwa kujieleza yoyote algebraic\(S\) na idadi halisi\(b\) na\(c\)\(b>0\), ambapo\(b≠1\),

    \[\begin{align} {\log}_b(S)=c \text{ if and only if } b^c=S \end{align}\]

    Mfano\(\PageIndex{9}\): Using Algebra to Solve a Logarithmic Equation

    Kutatua\(2\ln x+3=7\).

    Suluhisho

    \[\begin{align*} 2\ln x+3&= 7\\ 2\ln x&= 4 \qquad \text{Subtract 3}\\ \ln x&= 2 \qquad \text{Divide by 2}\\ x&= e^2 \qquad \text{Rewrite in exponential form} \end{align*}\]

    Zoezi\(\PageIndex{9}\)

    Kutatua\(6+\ln x=10\).

    Jibu

    \(x=e^4\)

    Mfano\(\PageIndex{10}\): Using Algebra Before and After Using the Definition of the Natural Logarithm

    Kutatua\(2\ln(6x)=7\).

    Suluhisho

    \[\begin{align*} 2\ln(6x)&= 7\\ \ln(6x)&= \dfrac{7}{2} \qquad \text{Divide by 2}\\ 6x&= e^{\left (\dfrac{7}{2} \right )} \qquad \text{Use the definition of }\ln \\ x&= \dfrac{1}{6}e^{\left (\dfrac{7}{2} \right )} \qquad \text{Divide by 6} \end{align*}\]

    Zoezi\(\PageIndex{10}\)

    Kutatua\(2\ln(x+1)=10\).

    Jibu

    \(x=e^5−1\)

    Mfano\(\PageIndex{11}\): Using a Graph to Understand the Solution to a Logarithmic Equation

    Kutatua\(\ln x=3\).

    Suluhisho

    \[\begin{align*} \ln x&= 3\\ x&= e^3 \qquad \text{Use the definition of the natural logarithm} \end{align*}\]

    Kielelezo\(\PageIndex{3}\) inawakilisha grafu ya equation. Kwenye grafu, x -kuratibu ya hatua ambayo grafu mbili intersect ni karibu na\(20\). Kwa maneno mengine\(e^3≈20\). Calculator inatoa makadirio bora:\(e^3≈20.0855\).

    Grafu ya maswali mawili, y=3 na y=ln (x), ambayo huingiliana kwa uhakika (e ^ 3, 3) ambayo ni takriban (20.0855, 3).
    Kielelezo\(\PageIndex{3}\): Grafu ya\(y=\ln x\) na\(y=3\) msalaba katika hatua\((e^3,3)\), ambayo ni takriban\((20.0855, 3)\).
    Zoezi\(\PageIndex{11}\)

    Tumia calculator ya graphing ili kukadiria suluhisho la takriban kwa usawa wa logarithmic\(2^x=1000\) kwenye maeneo ya\(2\) decimal.

    Jibu

    \(x≈9.97\)

    Kutumia Mali moja kwa moja ya Logarithms kutatua Ulinganisho wa Logarithmic

    Kama ilivyo na equations kielelezo, tunaweza kutumia mali moja kwa moja kutatua equations logarithmic. Mali moja kwa moja ya kazi za logarithmic inatuambia kwamba, kwa idadi yoyote halisi\(x>0\)\(S>0\),\(T>0\) na nambari yoyote halisi\(b\), ambapo\(b≠1\),

    \({\log}_bS={\log}_bT\)kama na tu kama\(S=T\).

    Kwa mfano,

    Ikiwa\({\log}_2(x−1)={\log}_2(8)\), basi\(x−1=8\).

    Kwa hiyo, ikiwa\(x−1=8\), basi tunaweza kutatua\(x\), na tunapata\(x=9\). Kuangalia, tunaweza mbadala\(x=9\) katika equation awali:\({\log}_2(9−1)={\log}_2(8)=3\). Kwa maneno mengine, wakati equation ya logarithmic ina msingi sawa kila upande, hoja lazima iwe sawa. Hii pia inatumika wakati hoja ni maneno algebraic. Kwa hiyo, tunapopewa equation na magogo ya msingi sawa kila upande, tunaweza kutumia sheria za logarithms kuandika upya kila upande kama logarithm moja. Kisha sisi kutumia ukweli kwamba kazi logarithmic ni moja kwa moja kuweka hoja sawa na mtu mwingine na kutatua kwa haijulikani.

    Kwa mfano, fikiria equation\(\log(3x−2)−\log(2)=\log(x+4)\). Ili kutatua equation hii, tunaweza kutumia sheria za logarithms kuandika upya upande wa kushoto kama logarithm moja, na kisha kutumia mali moja kwa moja kutatua kwa\(x\):

    \[\begin{align*} \log(3x-2)-\log(2)&= \log(x+4)\\ \log \left (\dfrac{3x-2}{2} \right )&= \log(x+4) \qquad \text{Apply the quotient rule of logarithms}\\ \dfrac{3x-2}{2}&= x+4 \qquad \text{Apply the one to one property of a logarithm}\\ 3x-2&= 2x+8 \qquad \text{Multiply both sides of the equation by 2}\\ x&= 10 \qquad \text{Subtract 2x and add 2} \end{align*}\]

    Kuangalia matokeo, mbadala\(x=10\) ndani\(\log(3x−2)−\log(2)=\log(x+4)\).

    \[\begin{align*} \log(3(10)-2)-\log(2)&= \log((10)+4) \\ \log(28)-\log(2)&= \log(14)\\ \log \left (\dfrac{28}{2} \right )&= \log(14) \qquad \text{The solution checks} \end{align*}\]

    KUTUMIA MALI MOJA KWA MOJA YA LOGARITHMS KUTATUA USAWA WA LOGARITHMIC

    Kwa maneno yoyote ya algebraic\(S\) na\(T\) na nambari yoyote halisi\(b\), ambapo\(b≠1\),

    \[\begin{align} b^S=b^T\text{ if and only if } S=T \end{align}\]

    Kumbuka, wakati wa kutatua equation inayohusisha logarithms, daima angalia ili uone kama jibu ni sahihi au ikiwa ni suluhisho la nje.

    Jinsi ya: Kutokana na equation iliyo na logarithms, tatua kwa kutumia mali moja kwa moja
    1. Tumia sheria za logarithms kuchanganya kama maneno, ikiwa ni lazima, ili equation inayosababisha ina fomu\({\log}_bS={\log}_bT\).
    2. Tumia mali moja kwa moja ili kuweka hoja sawa.
    3. Kutatua equation kusababisha,\(S=T\), kwa haijulikani.
    Mfano\(\PageIndex{12}\): Solving an Equation Using the One-to-One Property of Logarithms

    Kutatua\(\ln(x^2)=\ln(2x+3)\).

    Suluhisho

    \[\begin{align*} \ln(x^2)&= \ln(2x+3)\\ x^2&= 2x+3 \qquad \text{Use the one-to-one property of the logarithm}\\ x^2-2x-3&= 0 \qquad \text{Get zero on one side before factoring}\\ (x-3)(x+1)&= 0 \qquad \text{Factor using FOIL}\\ x-3&= 0 \qquad \text{or } x+1=0 \text{ If a product is zero, one of the factors must be zero}\\ x=3 \qquad \text{or} \\ x&= -11 \qquad \text{Solve for x} \end{align*}\]

    Uchambuzi

    Kuna ufumbuzi mbili:\(3\) au\(−1\). Suluhisho\(−1\) ni hasi, lakini hundi linapobadilishwa kwenye equation ya awali kwa sababu hoja ya kazi za logarithm bado ni chanya.

    Zoezi\(\PageIndex{12}\)

    Kutatua\(\ln(x^2)=\ln1\).

    Jibu

    \(x=1\)au\(x=−1\)

    Kutatua Matatizo yaliyotumika Kutumia Ulinganisho wa Kielelezo na Logarithmic

    Katika sehemu zilizopita, tulijifunza mali na sheria za kazi zote mbili za kielelezo na za logarithmic. Tumeona kwamba kazi yoyote ya kielelezo inaweza kuandikwa kama kazi ya logarithmic na kinyume chake. Tumetumia vielelezo kutatua equations logarithmic na logarithms kutatua equations kielelezo. Sasa tuko tayari kuchanganya ujuzi wetu kutatua equations kwamba mfano hali halisi ya dunia, kama haijulikani ni katika exponent au katika hoja ya logarithm.

    Moja ya maombi hayo ni katika sayansi, kwa kuhesabu muda inachukua kwa nusu ya nyenzo zisizo na uhakika katika sampuli ya dutu ya mionzi kuoza, inayoitwa nusu ya maisha yake. Jedwali\(\PageIndex{1}\) linaorodhesha nusu ya maisha kwa vitu kadhaa vya kawaida vya mionzi.

    Jedwali\(\PageIndex{1}\)
    Dutu Tumia Nusu ya maisha
    gallium-67 dawa za nyuklia Masaa 80
    cobalt-60 utengenezaji Miaka ya 5.3
    technetium-99m dawa za nyuklia Masaa 6
    Americium-241 ujenzi Miaka ya 432
    kaboni-14 dating akiolojia Miaka ya 5,715
    uranium-235 nguvu ya atomiki Miaka 703,800,000

    Tunaweza kuona jinsi maisha ya nusu ya vitu hivi yanatofautiana. Kujua nusu ya maisha ya dutu inatuwezesha kuhesabu kiasi kilichobaki baada ya muda maalum. Tunaweza kutumia formula kwa kuoza kwa mionzi:

    \[\begin{align} A(t)&= A_0e^{\tfrac{\ln(0.5)}{T}t}\\ A(t)&= A_0e^{\tfrac{\ln(0.5)t}{T}}\\ A(t)&= A_0{(e^{\ln(0.5)})}^{\tfrac{t}{T}}\\ A(t)&= A_0{\left (\dfrac{1}{2}\right )}^{\tfrac{t}{T}}\\ \end{align}\]

    wapi

    • \(A_0\)ni kiasi awali sasa
    • \(T\)ni nusu ya maisha ya dutu hii
    • \(t\)ni kipindi cha wakati ambapo dutu hii inasoma
    • \(y\)ni kiasi cha dutu hii iliyopo baada ya muda\(t\)
    Mfano\(\PageIndex{13}\): Using the Formula for Radioactive Decay to Find the Quantity of a Substance

    Itachukua muda gani kwa asilimia kumi ya sampuli ya\(1000\) -gram ya uranium-235 kuoza?

    Suluhisho

    \[\begin{align*} y&= 1000e^{\tfrac{\ln(0.5)}{703,800,000}t}\\ 900&= 1000e^{\tfrac{\ln(0.5)}{703,800,000}t} \qquad \text{After } 10\% \text{ decays, 900 grams are left}\\ 0.9&= e^{\tfrac{\ln(0.5)}{703,800,000}t} \qquad \text{Divide by 1000}\\ \ln(0.9)&= \ln \left (e^{\tfrac{\ln(0.5)}{703,800,000}t} \right ) \qquad \text{Take ln of both sides}\\ \ln(0.9)&= \dfrac{\ln(0.5)}{703,800,000}t \qquad \ln(e^M)=M\\ t&= 703,800,000\times \dfrac{\ln(0.9)}{\ln(0.5)} \qquad \text{years Solve for t}\\ t&\approx 106,979,777 \qquad \text{years} \end {align*} \]

    Uchambuzi

    Asilimia kumi ya\(1000\) gramu ni\(100\) gramu. Ikiwa\(100\) gramu huoza, kiasi cha uranium-235 iliyobaki ni\(900\) gramu.

    Zoezi\(\PageIndex{13}\)

    Itachukua muda gani kabla ya asilimia ishirini ya sampuli yetu ya gramu 1000 ya uranium-235 imeharibika?

    Jibu

    \(t=703,800,000×\dfrac{\ln(0.8)}{\ln(0.5)}\)miaka ≈ miaka 226,572,993.

    Media

    Fikia rasilimali hizi za mtandaoni kwa maelekezo ya ziada na mazoezi na usawa wa kielelezo na wa logarithmic.

    • Kutatua Ulinganifu wa Logarithmic
    • Kutatua Ulinganisho wa Kielelezo na Logarithms

    Mlinganyo muhimu

    Mali moja kwa moja kwa kazi za kielelezo Kwa maneno yoyote ya algebraic\(S\)\(T\) na na nambari yoyote halisi\(b\), ambapo\(b^S=b^T\) ikiwa na tu ikiwa\(S=T\).
    Ufafanuzi wa logarithm Kwa yoyote algebraic kujieleza S na chanya idadi halisi\(b\) na\(c\), wapi\(b≠1\),\({\log}_b(S)=c\) kama na tu kama\(b^c=S\).
    Mali moja kwa moja kwa kazi za logarithmic Kwa maneno yoyote ya algebraic\(S\) na\(T\) na nambari yoyote halisi\(b\), wapi\(b≠1\),
    \({\log}_bS={\log}_bT\) ikiwa na tu ikiwa\(S=T\).

    Dhana muhimu

    • Tunaweza kutatua equations nyingi kielelezo kwa kutumia sheria ya exponents kuandika upya kila upande kama nguvu na msingi huo. Kisha sisi kutumia ukweli kwamba kazi kielelezo ni moja kwa moja kuweka exponents sawa na mtu mwingine na kutatua kwa haijulikani.
    • Wakati sisi ni kupewa equation kielelezo ambapo besi ni wazi umeonyesha kama kuwa sawa, kuweka exponents sawa na mtu mwingine na kutatua kwa haijulikani. Angalia Mfano\(\PageIndex{1}\).
    • Wakati sisi ni kupewa equation kielelezo ambapo besi si wazi umeonyesha kama kuwa sawa, kuandika upya kila upande wa equation kama nguvu ya msingi huo, kisha kuweka exponents sawa na mtu mwingine na kutatua kwa haijulikani. Angalia Mfano\(\PageIndex{2}\), Mfano\(\PageIndex{3}\), na Mfano\(\PageIndex{4}\).
    • Wakati equation kielelezo haiwezi kuandikwa upya na msingi wa kawaida, kutatua kwa kuchukua logarithm ya kila upande. Angalia Mfano\(\PageIndex{5}\).
    • Tunaweza kutatua equations kielelezo na msingi\(e\), kwa kutumia logarithm asili ya pande zote mbili kwa sababu kazi kielelezo na logarithmic ni inverses ya kila mmoja. Angalia Mfano\(\PageIndex{6}\) na Mfano\(\PageIndex{7}\).
    • Baada ya kutatua equation ya kielelezo, angalia kila suluhisho katika equation ya awali ili kupata na kuondokana na ufumbuzi wowote wa nje. Angalia Mfano\(\PageIndex{8}\).
    • Wakati kupewa equation ya fomu\({\log}_b(S)=c\), ambapo\(S\) ni kujieleza algebraic, tunaweza kutumia ufafanuzi wa logarithm kuandika upya equation kama sawa kielelezo equation\(b^c=S\), na kutatua kwa haijulikani. Angalia Mfano\(\PageIndex{9}\) na Mfano\(\PageIndex{10}\).
    • Tunaweza pia kutumia graphing kutatua equations na fomu\({\log}_b(S)=c\). Sisi grafu equations wote\(y={\log}_b(S)\) na\(y=c\) juu ya ndege sawa kuratibu na kutambua suluhisho kama x- thamani ya hatua intersecting. Angalia Mfano\(\PageIndex{11}\).
    • Wakati kupewa equation ya fomu\({\log}_bS={\log}_bT\), ambapo\(S\) na\(T\) ni maneno algebraic, tunaweza kutumia mali moja kwa moja ya logarithms kutatua equation\(S=T\) kwa haijulikani. Angalia Mfano\(\PageIndex{12}\).
    • Kuchanganya ujuzi kujifunza katika sehemu hii na ya awali, tunaweza kutatua equations kwamba mfano wa hali halisi ya dunia, kama haijulikani ni katika exponent au katika hoja ya logarithm. Angalia Mfano\(\PageIndex{13}\).