Masharti muhimu Sura ya 07: Kuzingatia
- Page ID
- 177886
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)
- Tofauti ya Mraba Pattern
- Kama\(a\) na\(b\) ni idadi halisi,
- Factoring
- Kuzingatia ni kugawanya bidhaa katika mambo; kwa maneno mengine, ni mchakato wa reverse wa kuzidisha.
- Mkuu Kawaida Factor
- Sababu kubwa ya kawaida ni kujieleza kubwa ambayo ni sababu ya maneno mawili au zaidi ni sababu kubwa ya kawaida (GCF).
- Perfect Square Trinomials Pattern
- Kama\(a\) na\(b\) ni idadi halisi,
\[a^2 + 2ab + b^2= (a + b)^2 \qquad a^2 - 2ab + b^2 = (a - b)^2\]
- Mkuu Polynomials
- Polynomials ambayo haiwezi kuhesabiwa ni polynomials mkuu.
- Ulinganifu wa Quadratic
- ni equations ambayo variable ni squared.
- Jumla na Tofauti ya Cubes Pattern
-
\[a^3 + b^3 = (a + b)(a^2 - ab + b^2)\]
\[a^3 - b^3 = (a - b)(a^2 + ab + b^2)\]
- Zero Bidhaa Mali
- Mali ya Bidhaa ya Zero inasema kwamba, ikiwa bidhaa ya kiasi mbili ni sifuri, angalau moja ya kiasi ni sifuri.