Skip to main content
Global

Masharti muhimu Sura ya 07: Kuzingatia

  • Page ID
    177886
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Tofauti ya Mraba Pattern
    Kama\(a\) na\(b\) ni idadi halisi,

    Picha hii inaonyesha tofauti ya formula mraba mbili, mraba — b squared = (a — b) (a + b). Pia, mraba ni lebo, mraba na b squared. Tofauti huonyeshwa kati ya maneno mawili. Hatimaye, factoring (a - b) (a + b) ni kinachoitwa kama conjugates.
    Factoring
    Kuzingatia ni kugawanya bidhaa katika mambo; kwa maneno mengine, ni mchakato wa reverse wa kuzidisha.
    Mkuu Kawaida Factor
    Sababu kubwa ya kawaida ni kujieleza kubwa ambayo ni sababu ya maneno mawili au zaidi ni sababu kubwa ya kawaida (GCF).
    Perfect Square Trinomials Pattern
    Kama\(a\) na\(b\) ni idadi halisi,

    \[a^2 + 2ab + b^2= (a + b)^2 \qquad a^2 - 2ab + b^2 = (a - b)^2\]

    Mkuu Polynomials
    Polynomials ambayo haiwezi kuhesabiwa ni polynomials mkuu.
    Ulinganifu wa Quadratic
    ni equations ambayo variable ni squared.
    Jumla na Tofauti ya Cubes Pattern

    \[a^3 + b^3 = (a + b)(a^2 - ab + b^2)\]

    \[a^3 - b^3 = (a - b)(a^2 + ab + b^2)\]

    Zero Bidhaa Mali
    Mali ya Bidhaa ya Zero inasema kwamba, ikiwa bidhaa ya kiasi mbili ni sifuri, angalau moja ya kiasi ni sifuri.