Skip to main content
Query

1.1 : Définition des nombres réels et de la ligne numérique

  • Page ID
    165785
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Définition : nombres réels

    Les nombres réels sont les nombres qui sont normalement utilisés dans les problèmes mathématiques du monde réel.

    Voici des groupes de nombres courants qui sont des nombres réels :

    Nombres entiers : \(0,\; 1,\; 2,\; 3,\; 4,\; 5,\; 6,\; \ldots \) Nombre de comptage positif plus zéro
    Entiers : \(\ldots\; -3,\; -2,\; -1,\; 0,\; 1,\; 2,\; 3,\;\ldots \) Nombres entiers positifs et négatifs
    Nombres rationnels : \(13,\; \dfrac{2}{7} ,\; \dfrac{−1 }{3},\; −2,\; 1.32,\; -12.64\) Nombres pouvant être écrits sous la forme a b, où a et b sont des nombres entiers. Les nombres décimaux sont des nombres rationnels.
    Chiffres irrationnels : \(e,\; \sqrt{8},\;−\sqrt{11},\; \pi ,\; 0.1234\) Nombres qui ne peuvent pas être exprimés sous la forme d'un b. Les nombres irrationnels sont des nombres dont les décimales ne se répètent pas et qui ne se répètent pas !

    Remarque : Les nombres réels peuvent être positifs ou négatifs et inclure 0, comme indiqué ci-dessus.

    Définition : La ligne numérique

    Une ligne qui s'étend horizontalement avec des coordonnées qui correspondent à des nombres réels. La ligne numérique permet de mesurer la distance entre l'origine (0) et un nombre réel. Voici un exemple de ligne numérique :

    Capture.PNG
    Figure Template:index

    Lecture de la ligne numérique :

    L'origine correspond au chiffre 0 sur la ligne numérique.

    À gauche de l'origine se trouvent les nombres négatifs.

    À droite de l'origine se trouvent les nombres positifs.

    Représentez les chiffres suivants sur la ligne numérique ci-dessous :\(-5,\; e,\; 3.5,\; -2.25,\; 7.01,\; -5.2,\; \sqrt {20},\; \pi \).

    2.PNG
    Figure Template:Index