Skip to main content
Global

9.1 : Simplifier les expressions rati

  • Page ID
    165883
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Définition : Expression rationnelle

    Une expression rationnelle s'écrit sous la forme d'un quotient de polynômes.

    \[\dfrac{P(x)}{Q(x)} \nonumber \]

    \(P(x)\) et\(Q(x)\) sont des polynômes dans une variable\(x\).

    Pour simplifier une expression rationnelle, factorisez à la fois le numérateur et le dénominateur, et supprimez les facteurs communs du numérateur et du dénominateur. Une expression rationnelle simplifiée ne comporte qu'une seule division et un seul numérateur et dénominateur. Si les expressions ne peuvent pas être factorisées, l'expression rationnelle ne peut pas être simplifiée.

    Simplifiez les expressions rationnelles :

    1. \(\dfrac{x^2 + 2x − 3}{x^2 + 4x + 3}\)
    2. \(\dfrac{(x^2 + 1)^2 (−2) + (2x)(2)(x^2 + 1)(2x)}{(x^2 + 1)^4}\)
    3. \(\dfrac{(x^2 + 1) \frac{1}{2} (x^{−\frac{1}{2}}) − (2x)(x^{\frac{1}{2}})}{(x^2 + 1)^2}\)

    Solution

    1. \(\begin{array} &&\dfrac{x^2 + 2x − 3}{x^2 + 4x + 3} &\text{Example problem} \\ &\dfrac{(x + 3)(x − 1)}{(x + 3)(x + 1)} &\text{Factor both numerator and denominator.} \\ &\dfrac{\cancel{(x + 3)}(x − 1)}{\cancel{(x + 3)}(x + 1)} &\text{Remove common factors, because \(\dfrac{x + 3}{x + 3} = 1\)} \ \ & \ dfrac {x − 1} {x + 1} & \ text {Réponse finale} \ end {array} \)
    1. \(\begin{array} &&\dfrac{(x^2 + 1)^2 (−2) + (2x)(2)(x^2 + 1)(2x)}{(x^2 + 1)^4} &\text{Example problem} \\ &\dfrac{2(x^2 + 1)[(x^2 + 1)(−1) + (2x)(2x)]}{(x^2 + 1)^4} &\text{Factor out 2(x^2 + 1)} \\ &\dfrac{2 \cancel{(x^2 + 1)}[(x^2 + 1)(−1) + (2x)(2x)]}{\cancel{(x^2+1)}(x^2 + 1)^3} &\text{Remove common factors, because \(\dfrac{x^2 + 1}{x^2 + 1} = 1\)} \ \ & \ dfrac {2 [−x^2 − 1 + 4x^2]} {(x^2 + 1) ^3} & \ text {Simplifiez en multipliant et en combinant des termes similaires} \ \ & \ dfrac {2 (3x^2 − 1)} {(x^2 + 1) ^3} & \ text {Réponse finale} \ end {tableau} \)
    1. \(\begin{array} &&\dfrac{(x^2 + 1) \frac{1}{2} (x^{−\frac{1}{2}}) − (2x)(x^{\frac{1}{2}})}{(x^2 + 1)^2} &\text{Example problem} \\ &\dfrac{\frac{(x^2+1)}{2x^{\frac{1}{2}}} − (2x)(x^{ \frac{1}{2} })}{(x^2 + 1)^2} &\text{Work with the negative exponent in the first term of the numerator by moving the factor to the denominator of the first term, next to the \(2\).} \ \ & \ dfrac {(x^2 + 1) − (2x) (x^ {\ frac {1} {2}}) 2 (x^ {\ frac {1} {2}})} {\ dfrac {2x^ {\ frac {1} {2}}} {(x^2 + 1) ^2}} & \ text {Dénominateur commun} \ \ & \ dfrac {x^2 + 1 − 4x^2} {(2x^ {\ frac {1} {2}}) (x^2 + 1) ^2} & \ text {Simplifiez en multipliant et en combinant des termes similaires} \ \ & \ dfrac {−3x^2 + 1} {(2x^ {\ frac {1} {2}}) (x^2 + 1) ^2} & \ text {Réponse finale} \ end {tableau} \)

    Simplifiez les expressions rationnelles :

    1. \(\dfrac{2x^2 + 3x − 2}{2x^2 + 5x − 3}\)
    2. \(\dfrac{(t^2 + 4)(2t − 4) − (t^2 − 4t + 4)(2t)}{(t^2 + 4)^2}\)
    3. \(\dfrac{(2)(x − 4)(x^2 + 4x + 4)}{(x + 2)(x^2 − 16)}\)
    4. \(\dfrac{12x^2 + 19x − 21}{12x^2 + 38x − 40}\)