Stub 5 Henry
- Last updated
- Save as PDF
- Page ID
- 37832
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)
!pip install python-copasi
# -*- coding: utf-8 -*-
# Copyright (C) 2017 by Pedro Mendes, Virginia Tech Intellectual
# Properties, Inc., University of Heidelberg, and University of
# of Connecticut School of Medicine.
# All rights reserved.
# Copyright (C) 2010 - 2016 by Pedro Mendes, Virginia Tech Intellectual
# Properties, Inc., University of Heidelberg, and The University
# of Manchester.
# All rights reserved.
#
# This is an example on how to calculate and output the Jacobian matrix
# in COPASI
#
from COPASI import *
import sys
MODEL_STRING = "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n <!-- Created by COPASI version 4.5.31 (Debug) on 2010-05-11 13:40 with libSBML version 4.1.0-b3. -->\n <sbml xmlns=\"http://www.sbml.org/sbml/level2/version4\" level=\"2\" version=\"4\">\n <model metaid=\"COPASI1\" id=\"Model_1\" name=\"New Model\">\n <listOfUnitDefinitions>\n <unitDefinition id=\"volume\" name=\"volume\">\n <listOfUnits>\n <unit kind=\"litre\" scale=\"-3\"/>\n </listOfUnits>\n </unitDefinition>\n <unitDefinition id=\"substance\" name=\"substance\">\n <listOfUnits>\n <unit kind=\"mole\" scale=\"-3\"/>\n </listOfUnits>\n </unitDefinition>\n <unitDefinition id=\"unit_0\">\n <listOfUnits>\n <unit kind=\"second\" exponent=\"-1\"/>\n </listOfUnits>\n </unitDefinition>\n </listOfUnitDefinitions>\n <listOfCompartments>\n <compartment id=\"compartment_1\" name=\"compartment\" size=\"1\"/>\n </listOfCompartments>\n <listOfSpecies>\n <species metaid=\"COPASI2\" id=\"species_1\" name=\"A\" compartment=\"compartment_1\" initialConcentration=\"1\"/>\n <species metaid=\"COPASI3\" id=\"species_2\" name=\"B\" compartment=\"compartment_1\" initialConcentration=\"0\"/>\n <species metaid=\"COPASI4\" id=\"species_3\" name=\"C\" compartment=\"compartment_1\" initialConcentration=\"0\"/>\n </listOfSpecies>\n <listOfReactions>\n <reaction metaid=\"COPASI5\" id=\"reaction_1\" name=\"reaction_1\" reversible=\"false\">\n <listOfReactants>\n <speciesReference species=\"species_1\"/>\n </listOfReactants>\n <listOfProducts>\n <speciesReference species=\"species_2\"/>\n </listOfProducts>\n <kineticLaw>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <apply>\n <times/>\n <ci> compartment_1 </ci>\n <ci> k1 </ci>\n <ci> species_1 </ci>\n </apply>\n </math>\n <listOfParameters>\n <parameter id=\"k1\" name=\"k1\" value=\"0.2\" units=\"unit_0\"/>\n </listOfParameters>\n </kineticLaw>\n </reaction>\n <reaction metaid=\"COPASI6\" id=\"reaction_2\" name=\"reaction_2\" reversible=\"false\">\n <listOfReactants>\n <speciesReference species=\"species_2\"/>\n </listOfReactants>\n <listOfProducts>\n <speciesReference species=\"species_3\"/>\n </listOfProducts>\n <kineticLaw>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <apply>\n <times/>\n <ci> compartment_1 </ci>\n <ci> k1 </ci>\n <ci> species_2 </ci>\n </apply>\n </math>\n <listOfParameters>\n <parameter id=\"k1\" name=\"k1\" value=\"0.1\" units=\"unit_0\"/>\n </listOfParameters>\n </kineticLaw>\n </reaction>\n </listOfReactions>\n </model>\n </sbml>\n"
MODEL_STRING = "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n <!-- Created by COPASI version 4.5.31 (Debug) on 2010-05-11 13:40 with libSBML version 4.1.0-b3. -->\n <sbml xmlns=\"http://www.sbml.org/sbml/level2/version4\" level=\"2\" version=\"4\">\n <model metaid=\"COPASI1\" id=\"Model_1\" name=\"New Model\">\n <listOfUnitDefinitions>\n <unitDefinition id=\"volume\" name=\"volume\">\n <listOfUnits>\n <unit kind=\"litre\" scale=\"-3\"/>\n </listOfUnits>\n </unitDefinition>\n <unitDefinition id=\"substance\" name=\"substance\">\n <listOfUnits>\n <unit kind=\"mole\" scale=\"-3\"/>\n </listOfUnits>\n </unitDefinition>\n <unitDefinition id=\"unit_0\">\n <listOfUnits>\n <unit kind=\"second\" exponent=\"-1\"/>\n </listOfUnits>\n </unitDefinition>\n </listOfUnitDefinitions>\n <listOfCompartments>\n <compartment id=\"compartment_1\" name=\"compartment\" size=\"1\"/>\n </listOfCompartments>\n <listOfSpecies>\n <species metaid=\"COPASI2\" id=\"species_1\" name=\"A\" compartment=\"compartment_1\" initialConcentration=\"1\"/>\n <species metaid=\"COPASI3\" id=\"species_2\" name=\"B\" compartment=\"compartment_1\" initialConcentration=\"0\"/>\n <species metaid=\"COPASI4\" id=\"species_3\" name=\"C\" compartment=\"compartment_1\" initialConcentration=\"0\"/>\n </listOfSpecies>\n <listOfReactions>\n <reaction metaid=\"COPASI5\" id=\"reaction_1\" name=\"reaction_1\" reversible=\"false\">\n <listOfReactants>\n <speciesReference species=\"species_1\"/>\n </listOfReactants>\n <listOfProducts>\n <speciesReference species=\"species_2\"/>\n </listOfProducts>\n <kineticLaw>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <apply>\n <times/>\n <ci> compartment_1 </ci>\n <ci> k1 </ci>\n <ci> species_1 </ci>\n </apply>\n </math>\n <listOfParameters>\n <parameter id=\"k1\" name=\"k1\" value=\"0.2\" units=\"unit_0\"/>\n </listOfParameters>\n </kineticLaw>\n </reaction>\n <reaction metaid=\"COPASI6\" id=\"reaction_2\" name=\"reaction_2\" reversible=\"false\">\n <listOfReactants>\n <speciesReference species=\"species_2\"/>\n </listOfReactants>\n <listOfProducts>\n <speciesReference species=\"species_3\"/>\n </listOfProducts>\n <kineticLaw>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\">\n <apply>\n <times/>\n <ci> compartment_1 </ci>\n <ci> k1 </ci>\n <ci> species_2 </ci>\n </apply>\n </math>\n <listOfParameters>\n <parameter id=\"k1\" name=\"k1\" value=\"0.1\" units=\"unit_0\"/>\n </listOfParameters>\n </kineticLaw>\n </reaction>\n </listOfReactions>\n </model>\n </sbml>\n"
def main():
assert CRootContainer.getRoot() != None
# create a new datamodel
dataModel = CRootContainer.addDatamodel()
assert dataModel != None
assert CRootContainer.getDatamodelList().size() == 1
# next we import a simple SBML model from a string
# clear the message queue so that we only have error messages from the import in the queue
CCopasiMessage.clearDeque()
result=True
try:
result = dataModel.importSBMLFromString(MODEL_STRING)
except:
sys.stderr.write("Import of model failed miserably.\n")
return
# check if the import was successful
mostSevere = CCopasiMessage.getHighestSeverity()
# if it was a filtered error, we convert it to an unfiltered type
# the filtered error messages have the same value as the unfiltered, but they
# have the 7th bit set which basically adds 128 to the value
mostSevere = mostSevere & 127
# we assume that the import succeeded if the return value is True and
# the most severe error message is not an error or an exception
if result != True and mostSevere < CCopasiMessage.ERROR:
sys.stderr.write("Sorry. Model could not be imported.\n")
return
#
# now we tell the model object to calculate the jacobian
#
model = dataModel.getModel()
assert model != None
if model != None:
# running a task, e.g. a trajectory will automatically make sure that
# the initial values are transferred to the current state before the calculation begins.
# If we use low level calculation methods like the one to calculate the jacobian, we
# have to make sure the the initial values are applied to the state
model.applyInitialValues()
# we need an array that stores the result
# the size of the matrix does not really matter because
# the calculateJacobian autoamtically resizes it to the correct
# size
jacobian=FloatMatrix()
# the first parameter to the calculation function is a reference to
# the matrix where the result is to be stored
# the second parameter is the derivationFactor for the calculation
# it basically represents a relative delta value for the calculation of the derivatives
# the third parameter is a boolean indicating whether the jacobian should
# be calculated from the reduced (true) or full (false) system
model.getMathContainer().calculateJacobian(jacobian, 1e-12, False)
# now we print the result
# the jacobian stores the values in the order they are
# given in the user order in the state template so it is not really straight
# forward to find out which column/row corresponds to which species
stateTemplate = model.getStateTemplate()
# and we need the user order
userOrder = stateTemplate.getUserOrder()
# from those two, we can construct an new vector that contains
# the names of the entities in the jacobian in the order in which they appear in
# the jacobian
nameVector=[]
entity = None
status=-1
for i in range(0,userOrder.size()):
entity = stateTemplate.getEntity(userOrder.get(i))
assert entity != None
# now we need to check if the entity is actually
# determined by an ODE or a reaction
status = entity.getStatus()
if (status == CModelEntity.Status_ODE or (status == CModelEntity.Status_REACTIONS and entity.isUsed())):
nameVector.append(entity.getObjectName())
assert len(nameVector) == jacobian.numRows()
# now we print the matrix, for this we assume that no
# entity name is longer then 5 character which is a save bet since
# we know the model
print ("Jacobian Matrix:")
print ("")
row = "%7s" % (" ")
for i in range(0,len(nameVector)):
row = row + " %7s" % (nameVector[i])
print (row)
for i in range(0,len(nameVector)):
row = "%7s" % (nameVector[i])
for j in range(0,len(nameVector)):
row = row + " %7.3f" % (jacobian.get(i,j))
print (row)
# we can also calculate the jacobian of the reduced system
# in a similar way
model.getMathContainer().calculateJacobian(jacobian, 1e-12, True)
# this time generating the output is actually simpler because the rows
# and columns are ordered in the same way as the independent variables of the state temple
print ("")
print ("")
print ("Reduced Jacobian Matrix:")
print ("")
row = "%7s" % (" ")
iMax = stateTemplate.getNumIndependent()
for i in range(0,iMax):
row = row + " %7s" % (stateTemplate.getIndependent(i).getObjectName())
print (row)
for i in range(0,iMax):
row = "%7s" % (stateTemplate.getIndependent(i).getObjectName())
for j in range(0,iMax):
row = row + " %7.3f" % (jacobian.get(i,j))
print (row)
if(__name__ == '__main__'):
main()

