Skip to main content
Global

8: Uendeshaji wa Polynomial

  • Page ID
    164594
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    • 8.1: Kuongezea na Kutoa kwa wingi (na Kuchanganya Kama Masharti)
      Ili kuongeza na kuondoa polynomials, kuchanganya kama maneno. Kama maneno na vigezo sawa na exponents sawa. Coefficients ya maneno inaweza kuwa tofauti. Kuwa makini wakati wa kuondoa, kusambaza uondoaji (fikiria kama kuongeza ya (-1) mara nyingi).
    • 8.2: Kuzidisha Polynomial
      Ili kuzidisha monomials mbili, kuzidisha maneno pamoja kwa kuongeza exponents na kuzidisha coefficients numeric. Ili kuzidisha polynomial na monomial, kuzidisha masharti yote ya polynomial na monomial. Ili kuzidisha binomials mbili, tumia mbinu ya FOIL ili kuzidisha: maneno ya kwanza, maneno ya nje, maneno ya ndani na masharti ya mwisho. Ili kuzidisha polynomials mbili, tumia mali ya usambazaji ili kuzidisha kila neno katika polynomial ya kwanza kwa kila neno katika polynomial ya pili.
    • 8.3: Kuzingatia na Kutafuta Solutions Polynomial (Zeroes)
      Kuna njia kadhaa za kupata ufumbuzi wa polynomials ambayo ni trinomials ya fomu ax^2 + bx + c = 0. Hizi pia huitwa zero halisi za polynomials. Ufumbuzi huu ni Jaribio na Check Factoring Method, Factor kwa Grouping Factoring Method, na Mfumo Quadratic.