5.6: Utawala wa Nguvu Kwa Waandishi
- Page ID
- 164581
Sheria hii husaidia kurahisisha usemi wa kielelezo uliofufuliwa kwa nguvu. Sheria hii mara nyingi huchanganyikiwa na utawala wa bidhaa, hivyo kuelewa sheria hii ni muhimu kwa ufanisi kurahisisha maneno ya kielelezo.
Kwa idadi yoyote halisi\(a\) na namba yoyote\(m\) na\(n\), utawala wa nguvu kwa wafuatiliaji ni yafuatayo:
\((a^m)^n = a^{m\cdot n}\)
Wazo:
Kutokana na usemi
\(\begin{aligned} &(2^2 )^3 && \text{Use the exponent definition to expand the expression inside the parentheses.} \\ &(2 \cdot 2)^3 && \text{Now use the exponent definition to expand according to the exponent outside the parentheses.}\\ &(2 \cdot 2) \cdot (2 \cdot 2) \cdot (2 \cdot 2) = 2^6 && = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 2^{1+1+1+1+1+1 }= 2^{6} \text{ (Product Rule of Exponents) }\end{aligned}\)
Hivyo,\((2^2 ) ^3 = 2^{2\cdot 3 }= 2^6\)
Kurahisisha maneno yafuatayo kwa kutumia utawala wa nguvu kwa watazamaji.
\((−3^4 )^3\)
Suluhisho
\((−3)^{4\cdot 3 }= (−3)^{12}\)
Kurahisisha maneno yafuatayo kwa kutumia utawala wa nguvu kwa watazamaji.
\((−3^4 )^3\)
Suluhisho
\((5y)^{3\cdot 7 }= (5y)^{21}\)
Kurahisisha maneno yafuatayo kwa kutumia utawala wa nguvu kwa watazamaji.
\(((−y)^5 )^2\)
Suluhisho
\((−y)^{5\cdot 2 }= (−y)^{10 }= y^{10}\)
Kurahisisha maneno yafuatayo kwa kutumia utawala wa nguvu kwa watazamaji.
\((x^{−2 })^3\)
Suluhisho
\(x^{−2\cdot 3 }= x^{−6 }= \dfrac{1 }{x^6}\)
Kidokezo: Mabano katika tatizo ni kiashiria kikubwa cha kurahisisha kutumia utawala wa nguvu kwa watazamaji.
Kurahisisha kujieleza kwa kutumia utawala nguvu kwa exponents.
- \((x^3 )^5\)
- \(((−y)^3 )^7\)
- \(((−6y)^8 ) ^{−3}\)
- \((x^{−2 }) ^{−3}\)
- \((r^4 )^5\)
- \((−p^7 )^7\)
- \(((3k)^{−3 })^5\)