# 3.6: Revisão da fórmula do capítulo

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

## 3.1 Terminologia

A e B são eventos

$$P(S) = 1$$onde$$S$$ está o espaço amostral

$$0 ≤ P(A) ≤ 1$$

$$P(A | B)=\frac{P(A \cap B)}{P(B)}$$

## 3.2 Eventos independentes e mutuamente exclusivos

$$\text {If } A \text { and } B \text { are independent, } P(A \cap B)=P(A) P(B), P(A | B)=P(A) \text { and } P(B | A)=P(B)$$

$$\text {If } A \text { and } B \text { are mutually exclusive, } P(A \cup B)=P(A)+P(B) \text { and } P(A \cap B)=0$$

## 3.3 Duas regras básicas de probabilidade

A regra de multiplicação:$$P(A \cap B) = P(A|B)P(B)$$

A regra de adição:$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$