10.2: Resolvendo e representando graficamente desigualdades e escrevendo respostas em notação de intervalo
- Page ID
- 170364
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)
Para resolver e representar graficamente as desigualdades:
- Resolva a desigualdade usando as Propriedades das desigualdades da seção anterior.
- Faça um gráfico do conjunto de soluções em uma reta numérica.
- Escreva o conjunto de soluções em notação de intervalo.
Resolva a desigualdade, represente graficamente o conjunto de soluções em uma reta numérica e mostre o conjunto de soluções em notação de intervalo:
- \(−1 ≤ 2x − 5 < 7\)
- \(x^2 + 7x + 10 < 0\)
- \(−6 < x − 2 < 4\)
Solução
- \(\begin{array} &&−1 ≤ 2x − 5 < 7 &\text{Example problem} \\ &−1 + 5 ≤ 2x − 5 + 5 < 7 + 5 &\text{The goal is to isolate the variable \(x\), então comece adicionando\(5\) todas as três regiões da desigualdade.}\\ &4 ≤ 2x < 12 &\ text {Simplifique.}\\ &\ dfrac {4} {2} ≤ 2x^2 <\ dfrac {4} {2} &\ text {Divida tudo por\(2\) para isolar a variável\(x\).}\\ &2 ≤ x < 6 &\ text {Resposta final escrita em inequality/solution set form.}\\ & [2, 6) &\ text {Resposta final escrita em notação de intervalo (consulte a seção sobre Notação de intervalo para obter mais detalhes)}\ end {array}\)
- \(\begin{array} &&x^2 + 7x + 10 < 0 &\text{Example problem} \\ &(x + 5)(x + 2) < 0 &\text{Factor the polynomial.} \\ &(x + 5)(x + 2) < 0 &\text{The product must be less than \(0\), o que significa que se\((x + 5) > 0\), então\((x + 2) < 0\). Da mesma forma\((x + 5) < 0\), se, então\((x + 2) > 0\).}\\ & (x + 5) > 0 (x + 2) < 0 &\ text {Find the intersection of each of these inequalities.}\\ &x > −5 x < −2 &\ text {Encontre a interseção de cada uma dessas desigualdades.} \ end {matriz}\)


\(\begin{array} &&\;\;\;−5 < x < −2 \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;&\text{Final answer written in inequality/solution set form.} \\ &\;\;\;(−5, −2) \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;&\text{Final answer written in interval notation (see section on Interval Notation for more details).} \end{array}\)
- \(\begin{array}&&−6 < x − 2 ≤ 4 &\text{Example problem} \\ &−6 + 2 < x − 2 + 2 ≤ 4 + 2 &\text{The goal is to isolate the variable \(x\), então comece adicionando\(2\) todas as três regiões da desigualdade.}\\ &−4 < x ≤ 6 &\ text {Resposta final escrita no formato de desigualdade/conjunto de soluções.}\\ & (−4, 6] &\ text {Resposta final escrita em notação de intervalo (consulte a seção Notação de intervalo para obter mais detalhes).} \ end {matriz}\)
Resolva as desigualdades, represente graficamente os conjuntos de soluções em uma reta numérica e mostre os conjuntos de soluções em notação de intervalo:
- \(0 ≤ x + 1 ≤ 4\)
- \(0 < 2(x − 1) ≤ 4\)
- \(6 < 2(x − 1) < 12\)
- \(x^2 − 6x − 16 < 0\)
- \(2x^2 − x − 15 > 0\)