5.2: A regra do produto para expoentes
- Page ID
- 170036
Para qualquer número real\(a\) e números positivos\(m\) e\(n\), a regra do produto para expoentes é a seguinte.
\(a^m \cdot a^n = a^{m+n}\)
Nota: As bases devem ser as mesmas para usar a regra do produto.
Ideia:
Da última seção,\(x^3 = \textcolor{blue}{ x \cdot x \cdot x }\qquad x^5 = \textcolor{red}{x \cdot x \cdot x \cdot x \cdot x}\)
Seu produto
\(x^3 \cdot x^5 = \textcolor{blue}{x \cdot x \cdot x} \textcolor{red}{\cdot x \cdot x \cdot x \cdot x \cdot x} = x^8\)
Conseqüentemente,\(x^3 \cdot x^5 = x^{3+5 }= x^8\)
Use a regra do produto dos expoentes para simplificar as expressões.
- \(k^3 \cdot k^9\)
- \(\left(\dfrac{2 }{7}\right)^2 \cdot \left(\dfrac{2 }{7}\right)^6\)
- \((−2a)^3 \cdot (−2a)^7\)
- \(x \cdot x^3 \cdot x^{11}\)
- \(y^{13 }\cdot y^{33}\)
- \(x^3 \cdot y^2 \cdot x \cdot y^4\)
Solução
Expressão | Regra do produto | Base |
\(k^3 \cdot k^9\) | \(k^{3+9}= k^{12}\) | \(k\) |
\(\left(\dfrac{2 }{7}\right)^2 \cdot \left(\dfrac{2 }{7}\right)^6\) | \(\left( \dfrac{2 }{7}\right)^{2+6 }= \left(\dfrac{2 }{7}\right)^8\) | \(\dfrac{2}{7}\) |
\((−2a)^3 \cdot (−2a)^7\) | \((−2a)^{3+7 }= (−2a)^{10}\) | \(-2a\) |
\(x \cdot x^3 \cdot x^{11}\) | \(x ^{1+3+11 }= x^{15}\) | \(x\) |
\(y^{13 }\cdot y^{33}\) | \(y^{13+33 }= y^46\) | \(y\) |
\(x^3 \cdot y^2 \cdot x \cdot y^4\) | \(x^{3+1 }\cdot y ^{2+4 }= x^{ 4 }\cdot y^{6}\) | \(x\)e\(y\) |
Nota: Novamente, as bases DEVEM ser as mesmas para simplificar o uso da regra do produto do expoente
Etapas úteis para simplificar o uso da regra do produto dos expoentes:
- Identifique termos com bases comuns
- Identifique o expoente das bases comuns.
- Adicione expoentes de bases comuns e transforme o resultado da soma no novo expoente.
- Repita as etapas conforme necessário
Use a regra do produto dos expoentes para simplificar o seguinte.
- \(f^3 \cdot f^11\)
- \(\left(\dfrac{x}{7}\right)^2 \cdot \left(\dfrac{x }{7}\right)^3\)
- \((−7x)^9 \cdot (−7x)^7\)
- \(h^5 \cdot h^3 \cdot h^{11}\)
- \(t^{13} \cdot t^{33}\)
- \(x^8 \cdot y^2 \cdot z \cdot x^ 3 \cdot y^2 \cdot z^{17}\)
- \(x^3 \cdot y^4 \cdot x^3\)