Skip to main content
Query

4.11 : Fonctions de définition fragmentaire

  • Page ID
    165708
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Définition : fonctions définies par morceaux

    Les fonctions définies par morceaux sont des fonctions définies à l'aide de différentes équations pour différentes parties du domaine.

    Évaluez la fonction définie par morceaux suivante pour les valeurs données de et\(x\) représentez la fonction sous forme graphique :

    \(f(x) = \left\{\begin{array}{cc}−2x + 1 & −1 \leq x < 0 \\ x^2 + 2 &0 \leq x \leq 2\end{array} \right.\)

    Solution

    Pour représenter graphiquement cette fonction, créez un tableau des solutions :

    Tableau des solutions pour\(f(x) = −2x + 1 \)

    Domaine\(−1 \leq x < 0\)

    \(x\) \(f(x)\)
    -1 3
    0 1 (cercle ouvert ici, 0 pas dans le domaine)

    Tableau des solutions pour\(f(x) = x^2 + 2\)

    Domaine\(0 \leq x \leq 2\)

    \(x\) \(f(x)\)
    0 2
    1 3
    2 6
    clipboard_e94fd5197718a7373772af1280306cf06.png
    Figure Template:index

    Évaluez la fonction définie par morceaux suivante pour les valeurs données de et\(x\) représentez la fonction sous forme graphique :

    \(f(x) = \left\{\begin{array}{cc} −x + 1 &x \leq −1 \\ 2 & −1 < x \leq 1 \\ −x + 3 &x > 1 \end{array}\right.\)

    Solution

    Pour représenter graphiquement cette fonction, créez à nouveau un tableau des solutions :

    Tableau des solutions pour\(f(x) = −x + 1\)

    Domaine\(x \leq −1\)

    \(x\) \(f(x)\)
    -3 4
    -2 3
    -1 2 (cercle fermé ici, -1 est dans le domaine)

    Tableau des solutions pour\(f(x) = 2\)

    Domaine\(−1 < x \leq 1\)

    \(x\) \(f(x)\)
    -1 2 (cercle ouvert rempli par la fonction précédente, -1 hors du domaine)
    0 2
    1 2 (cercle fermé ici, 1 est dans le domaine)

    Tableau des solutions pour\(f(x) = −x + 3\)

    Domaine\(x > 1\)

    \(x\) \(f(x)\)
    1 2 (cercle ouvert rempli par la fonction précédente, 1 non dans le domaine)
    2 1
    3 0
    clipboard_e795cd2fce50083772c8741bdcad72855.png
    Figure Template:Index

    Évaluez les fonctions définies par morceaux suivantes pour les valeurs données de x, et représentez les fonctions sous forme graphique :.

    1. \ (f (x) = \ left \ {\ begin {matrice} {cc}
      x & x<0 \ \
      2 x+1 &x \ geq 0
       \ end {matrice} \ droite. \)
    2. \(g(x) = \left\{\begin{array}{cc} 4 − x& x < 2\\ 2x − 2 &x \geq 2 \end{array} \right.\)
    3. \(h(x) = \left\{\begin{array}{cc} −x − 1 & x < −1 \\ 0& −1 \leq x \leq 1 \\ x + 1 & x > 1 \end{array} \right.\)
    4. \(g(x) = \left\{\begin{array}{cc} 6 & −8 \leq x < −4 \\ 3 &−4 \leq x \leq 5 \end{array}\right.\)
    5. \(f(x) = \left\{\begin{array}{cc} −x + 1 & −1 \leq x < 1 \\ \sqrt{x − 1 } &1 \leq x \leq 5\end{array}\right.\)