15.6E : Exercices pour la section 15.6
- Page ID
- 197481
Dans les exercices 1 à 12, la région\(R\) occupée par une lame est représentée sur un graphique. Déterminez la masse de\(R\) avec la fonction de densité\(\rho\).
1. \(R\)est la région triangulaire avec des sommets\((0,0), \space (0,3)\), et\((6,0); \space \rho (x,y) = xy\).
- Réponse
- \(\frac{27}{2}\)
2. \(R\) is the triangular region with vertices \((0,0), \space (1,1)\), and \((0,5); \space \rho (x,y) = x + y\).
3. \(R\)est la région rectangulaire avec des sommets\((0,0), \space (0,3), \space (6,3) \) et\((6,0); \space \rho (x,y) = \sqrt{xy}\).
- Réponse
- \(24\sqrt{2}\)
4. \(R\) is the rectangular region with vertices \((0,1), \space (0,3), \space (3,3)\) and \( (3,1); \space \rho (x,y) = x^2y\).
5. \(R\)est la région trapézoïdale déterminée par les droites\(y = - \frac{1}{4}x + \frac{5}{2}, \space y = 0, \space y = 2\), et\(x = 0; \space \rho (x,y) = 3xy\).
- Réponse
- \(76\)
6. \(R\) is the trapezoidal region determined by the lines \(y = 0, \space y = 1, \space y = x\) and \(y = -x + 3; \space \rho (x,y) = 2x + y\).
7. \(R\)est le disque de rayon\(2\) centré sur\((1,2); \space \rho(x,y) = x^2 + y^2 - 2x - 4y + 5\).
- Réponse
- \(8\pi\)
8. \(R\)est le disque unitaire ;\(\rho (x,y) = 3x^4 + 6x^2y^2 + 3y^4\).
9. \(R\) is the region enclosed by the ellipse \(x^2 + 4y^2 = 1; \space \rho(x,y) = 1\).
- Réponse
- \(\frac{\pi}{2}\)
10. \(R = \big\{(x,y) \,|\, 9x^2 + y^2 \leq 1, \space x \geq 0, \space y \geq 0\big\} ; \space \rho (x,y) = \sqrt{9x^2 + y^2}\).
11. \(R\) is the region bounded by \(y = x, \space y = -x, \space y = x + 2, \space y = -x + 2; \space \rho(x,y) = 1\).
- Réponse
- \(2\)
12. \(R\)est la région délimitée par\(y = \frac{1}{x}, \space y = \frac{2}{x}, \space y = 1\), et\(y = 2; \space \rho (x,y) = 4(x + y)\).
Dans les exercices 13 à 24, considérez une lame occupant la région\(R\) et ayant la fonction de densité\(\rho\) donnée dans le groupe d'exercices précédent. Utilisez un système d'algèbre informatique (CAS) pour répondre aux questions suivantes.
a. Trouvez les moments\(M_x\) et\(M_y\) autour de l'\(x\)axe -et de\(y\) l'axe -, respectivement.
b. Calculez et tracez le centre de masse de la lame.
c. [T] Utilisez un CAS pour localiser le centre de gravité sur le graphique de\(R\).
13. [T]\(R\) is the triangular region with vertices \((0,0), \space (0,3)\), and \((6,0); \space \rho (x,y) = xy\).
- Answer
-
a. \(M_x = \frac{81}{5}, \space M_y = \frac{162}{5}\);
b. \(\bar{x} = \frac{12}{5}, \space \bar{y} = \frac{6}{5}\);
c.
14. [T]\(R\) est la région triangulaire avec des sommets\((0,0), \space (1,1)\), et\((0,5); \space \rho (x,y) = x + y\).
15. [T]\(R\) est la région rectangulaire avec des sommets\((0,0), \space (0,3), \space (6,3)\), et\((6,0); \space \rho (x,y) = \sqrt{xy}\).
- Réponse
-
a.\(M_x = \frac{216\sqrt{2}}{5}, \space M_y = \frac{432\sqrt{2}}{5}\) ;
b.\(\bar{x} = \frac{18}{5}, \space \bar{y} = \frac{9}{5}\) ;
c.
16. [T]\(R\) is the rectangular region with vertices \((0,1), \space (0,3), \space (3,3)\), and \((3,1); \space \rho (x,y) = x^2y\).
17. [T] \(R\) is the trapezoidal region determined by the lines \(y = - \frac{1}{4}x + \frac{5}{2}, \space y = 0, \space y = 2\), and \(x = 0; \space \rho (x,y) = 3xy\).
- Answer
-
a. \(M_x = \frac{368}{5}, \space M_y = \frac{1552}{5}\);
b. \(\bar{x} = \frac{92}{95}, \space \bar{y} = \frac{388}{95}\);
c.
18. [T]\(R\) est la région trapézoïdale déterminée par les lignes\(y = 0, \space y = 1, \space y = x,\) et\(y = -x + 3; \space \rho (x,y) = 2x + y\).
19. [T]\(R\) est le disque dont le rayon est\(2\) centré sur\((1,2); \space \rho(x,y) = x^2 + y^2 - 2x - 4y + 5\).
- Réponse
-
a.\(M_x = 16\pi, \space M_y = 8\pi\) ;
b.\(\bar{x} = 1, \space \bar{y} = 2\) ;
c.
20. [T]\(R\) is the unit disk; \(\rho (x,y) = 3x^4 + 6x^2y^2 + 3y^4\).
21. [T] \(R\) is the region enclosed by the ellipse \(x^2 + 4y^2 = 1; \space \rho(x,y) = 1\).
- Answer
-
a. \(M_x = 0, \space M_y = 0)\);
b. \(\bar{x} = 0, \space \bar{y} = 0\);
c.
22. [T]\(R = \big\{(x,y) \,|\, 9x^2 + y^2 \leq 1, \space x \geq 0, \space y \geq 0\big\} ; \space \rho (x,y) = \sqrt{9x^2 + y^2}\).
23. [T]\(R\) is the region bounded by \(y = x, \space y = -x, \space y = x + 2\), and \(y = -x + 2; \space \rho (x,y) = 1\).
- Réponse
-
a.\(M_x = 2, \space M_y = 0)\) ;
b.\(\bar{x} = 0, \space \bar{y} = 1\) ;
c.
24. [T]\(R\) is the region bounded by \(y = \frac{1}{x}, \space y = \frac{2}{x}, \space y = 1\), and \(y = 2; \space \rho (x,y) = 4(x + y)\).
In exercises 25 - 36, consider a lamina occupying the region \(R\) and having the density function \(\rho\) given in the first two groups of Exercises.
a. Find the moments of inertia \(I_x, \space I_y\) and \(I_0\) about the \(x\)-axis, \(y\)-axis, and origin, respectively.
b. Find the radii of gyration with respect to the \(x\)-axis, \(y\)-axis, and origin, respectively.
25. \(R\) is the triangular region with vertices \((0,0), \space (0,3)\), and \((6,0); \space \rho (x,y) = xy\).
- Answer
- a. \(I_x = \frac{243}{10}, \space I_y = \frac{486}{5}\), and \(I_0 = \frac{243}{2}\);
b. \(R_x = \frac{3\sqrt{5}}{5}, \space R_y = \frac{6\sqrt{5}}{5}\), and \(R_0 = 3\)
26. \(R\) is the triangular region with vertices \((0,0), \space (1,1)\), and \((0,5); \space \rho (x,y) = x + y\).
27. \(R\) is the rectangular region with vertices \((0,0), \space (0,3), \space (6,3)\), and \((6,0); \space \rho (x,y) = \sqrt{xy}\).
- Answer
- a. \(I_x = \frac{2592\sqrt{2}}{7}, \space I_y = \frac{648\sqrt{2}}{7}\), and \(I_0 = \frac{3240\sqrt{2}}{7}\);
b. \(R_x = \frac{6\sqrt{21}}{7}, \space R_y = \frac{3\sqrt{21}}{7}\), and \(R_0 = \frac{3\sqrt{106}}{7}\)
28. \(R\) is the rectangular region with vertices \((0,1), \space (0,3), \space (3,3)\), and \((3,1); \space \rho (x,y) = x^2y\).
29. \(R\) is the trapezoidal region determined by the lines \(y = - \frac{1}{4}x + \frac{5}{2}, \space y = 0, \space y = 2\), and x = 0; \space \rho (x,y) = 3xy\).
- Answer
- a. \(I_x = 88, \space I_y = 1560\), and \(I_0 = 1648\);
b. \(R_x = \frac{\sqrt{418}}{19}, \space R_y = \frac{\sqrt{7410}}{10}\), and \(R_0 = \frac{2\sqrt{1957}}{19}\)
30. \(R\) is the trapezoidal region determined by the lines \(y = 0, \space y = 1, \space y = x\), and y = -x + 3; \space \rho (x,y) = 2x + y\).
31. \(R\) is the disk of radius \(2\) centered at \((1,2); \space \rho(x,y) = x^2 + y^2 - 2x - 4y + 5\).
- Answer
- a. \(I_x = \frac{128\pi}{3}, \space I_y = \frac{56\pi}{3}\), and \(I_0 = \frac{184\pi}{3}\);
b. \(R_x = \frac{4\sqrt{3}}{3}, \space R_y = \frac{\sqrt{21}}{2}\), and \(R_0 = \frac{\sqrt{69}}{3}\)
32. \(R\) is the unit disk; \(\rho (x,y) = 3x^4 + 6x^2y^2 + 3y^4\).
33. \(R\) is the region enclosed by the ellipse \(x^2 + 4y^2 = 1; \space \rho(x,y) = 1\).
- Answer
- a. \(I_x = \frac{\pi}{32}, \space I_y = \frac{\pi}{8}\), and \(I_0 = \frac{5\pi}{32}\);
b. \(R_x = \frac{1}{4}, \space R_y = \frac{1}{2}\), and \(R_0 = \frac{\sqrt{5}}{4}\)
34. \(R = \big\{(x,y) \,|\, 9x^2 + y^2 \leq 1, \space x \geq 0, \space y \geq 0\big\} ; \space \rho (x,y) = \sqrt{9x^2 + y^2}\).
35. \(R\) is the region bounded by \(y = x, \space y = -x, \space y = x + 2\), and \(y = -x + 2; \space \rho (x,y) = 1\).
- Answer
- a. \(I_x = \frac{7}{3}, \space I_y = \frac{1}{3}\), and \(I_0 = \frac{8}{3}\);
b. \(R_x = \frac{\sqrt{42}}{6}, \space R_y = \frac{\sqrt{6}}{6}\), and \(R_0 = \frac{2\sqrt{3}}{3}\)
36. \(R\) is the region bounded by \(y = \frac{1}{x}, \space y = \frac{2}{x}, \space y = 1\), and \(y = 2; \space \rho (x,y) = 4(x + y)\).
37. Let \(Q\) be the solid unit cube. Find the mass of the solid if its density \(\rho\) is equal to the square of the distance of an arbitrary point of \(Q\) to the \(xy\)-plane.
- Answer
- \(m = \frac{1}{3}\)
38. Let \(Q\) be the solid unit hemisphere. Find the mass of the solid if its density \(\rho\) is proportional to the distance of an arbitrary point of \(Q\) to the origin.
39. The solid \(Q\) of constant density \(1\) is situated inside the sphere \(x^2 + y^2 + z^2 = 16\) and outside the sphere \(x^2 + y^2 + z^2 = 1\). Show that the center of mass of the solid is not located within the solid.
40. Find the mass of the solid \(Q = \big\{ (x,y,z) \,|\, 1 \leq x^2 + z^2 \leq 25, \space y \leq 1 - x^2 - z^2 \big\}\) whose density is \(\rho (x,y,z) = k\), where \(k > 0\).
41. [T] The solid \(Q = \big\{ (x,y,z) \,|\, x^2 + y^2 \leq 9, \space 0 \leq z \leq 1, \space x \geq 0, \space y \geq 0\big\}\) has density equal to the distance to the \(xy\)-plane. Use a CAS to answer the following questions.
a. Find the mass of \(Q\).
b. Find the moments \(M_{xy}, \space M_{xz}\) and \(M_{yz}\) about the \(xy\)-plane, \(xz\)-plane, and \(yz\)-plane, respectively.
c. Find the center of mass of \(Q\).
d. Graph \(Q\) and locate its center of mass.
- Answer
-
a. \(m = \frac{9\pi}{4}\);
b. \(M_{xy} = \frac{3\pi}{2}, \space M_{xz} = \frac{81}{8}, \space M_{yz} = \frac{81}{8}\);
c. \(\bar{x} = \frac{9}{2\pi}, \space \bar{y} = \frac{9}{2\pi}, \space \bar{z} = \frac{2}{3}\);
d.
42. Considérez le solide\(Q = \big\{ (x,y,z) \,|\, 0 \leq x \leq 1, \space 0 \leq y \leq 2, \space 0 \leq z \leq 3\big\}\) avec la fonction de densité\(\rho(x,y,z) = x + y + 1\).
a. Déterminez la masse de\(Q\).
b. Trouvez les moments\(M_{xy}, \space M_{xz}\) et les\(M_{yz}\) informations relatives au\(xy\) plan, au\(xz\) plan et au\(yz\) plan, respectivement.
c. Déterminez le centre de gravité de\(Q\).
43. [T] Le solide\(Q\) a la masse donnée par la triple intégrale\(\displaystyle \int_{-1}^1 \int_0^{\pi/4} \int_0^1 r^2 \, dr \space d\theta \space dz.\)
Utilisez un CAS pour répondre aux questions suivantes.
- Montrez que le centre de gravité de\(Q\) est situé dans le\(xy\) plan.
- Tracez\(Q\) et localisez son centre de gravité.
- Réponse
-
\(\bar{x} = \frac{3\sqrt{2}}{2\pi}\),\(\bar{y} = \frac{3(2-\sqrt{2})}{2\pi}, \space \bar{z} = 0\) ; 2. le solide\(Q\) et son centre de masse sont représentés sur la figure suivante.
44. Le solide