Skip to main content
Global

5.7 : La puissance d'une règle de produit pour les exposants

  • Page ID
    165647
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    La puissance d'une règle de produit pour les exposants traitera des expressions dans lesquelles un produit de bases est élevé à une certaine puissance.

    Définition : La puissance d'une règle de produit pour les exposants

    Pour tout nombre réel a et b et pour tout nombre n, la puissance d'une règle de produit pour les exposants est la suivante :

    \((a \cdot b)^n =a^n \cdot b^n\)

    Simplifiez l'expression suivante

    \((a \cdot b)^3\)

    Solution

    \(\begin{aligned} &(a \cdot b) 3&& \text{Given} \\ &a \cdot b \cdot a \cdot b \cdot a \cdot b &&\text{Expand using exponent 3} \\ &a \cdot a \cdot a \cdot b \cdot b \cdot b &&\text{Reorder product using the commutative property.} \\ &a^3b^3 && \text{Simplify to single base.} \end{aligned}\)

    Simplifier l'expression en utilisant la puissance d'une règle de produit pour les exposants.

    \((2x^3y^2 )^2 \)

    Solution

    \(\begin{aligned} &((2x^3y^2 )^2 ) &&\text{Given} \\ &= 2^2 \cdot x^{3\cdot 2 } \cdot y^{2\cdot 2 } &&\text{Power of a product rule applied} \\ &= 4x ^6y^4 &&\text{Simplify by multiplying exponents} \end{aligned}\)

    Simplifier l'expression en utilisant la puissance d'une règle de produit pour les exposants.

    \((2x^5 \cdot 3y)^3\)

    Solution

    \(\begin{aligned} &(2x^5 \cdot 3y)^3 &&\text{Given}\\ &= (6x^5 y)^3 &&\text{If possible, simplify inside the parentheses.} \\ &= 6^3 \cdot x^{5\cdot 3 } \cdot y^3 &&\text{Power of a product rule for exponents applied.} \\ &216x^{15}y^3 &&\text{Simplify by multiplying as needed.} \end{aligned}\)

    Simplifier l'expression en utilisant la puissance d'une règle de produit pour les exposants.

    \((3ab^4 )^{−2}\)

    Solution

    \(\begin{aligned} &(3ab^4 )^{−2 } && \text{Given} \\ &= \dfrac{1 }{(3ab^4)^2 } &&\text{Negative exponent rule applied} \\ &= \dfrac{1 }{3^2 \cdot a^3 \cdot b^{4\cdot 2}}&&\text{Power of a product rule applied.} \\ &\dfrac{1 }{9a^3b^8 } &&\text{Simplify by multiplying as needed.} \end{aligned}\)

    Simplifiez l'expression en utilisant la puissance d'une règle de produit pour les exposants.

    1. \((xy^2 ) ^3\)
    2. \((2xy^2z ^3 ) ^7\)
    3. \((x^ 2 ) ^{−3}\)
    4. \((x ^2y) ^{−3}\)
    5. \((2r ^4 )^ 5\)
    6. \((−2p^ 7 )^ 7\)
    7. \((3k \cdot 2j^2 )^5\)