5.3 : La règle du quotient des exposants
- Page ID
- 165662
Pour tout nombre réel\(a\) et positif\(m\) et\(n\), où\(m > n\).
La règle du quotient pour les exposants est la suivante.
\(\dfrac{a^m }{a^n} = a^{ m−n}\)
Remarque : les bases DOIVENT être identiques. Le résultat aura la même base.
Idée :
À partir de la dernière section,
\(x^3 = \textcolor{blue}{x \cdot x \cdot x} \qquad x^5 = \textcolor{red}{x \cdot x \cdot x \cdot x \cdot x}\)
Leur quotient
\(\dfrac{x^ 5 }{x^3} = \dfrac{\textcolor{red}{x \cdot x \cdot x \cdot x \cdot x }}{\textcolor{blue}{x \cdot x \cdot x }}= \dfrac{\textcolor{red}{\cancel{x \cdot x\cdot x \cdot x }\cdot x }}{\textcolor{blue}{\cancel{x \cdot x\cdot x }}}= \dfrac{\textcolor{red}{x \cdot x }}{1} = \textcolor{red}{x \cdot x}\).
Donc,\(\dfrac{x^5 }{x^3 }= x^{5−3 }= x^2\)
Utiliser la règle du quotient des exposants pour simplifier les expressions.
- \(\dfrac{k^3 }{k^2}\)
- \(\dfrac{r^{32} }{r^{21}}\)
- \(\dfrac{\sqrt{2}^ 7 }{\sqrt{2 }^4}\)
- \(\dfrac{(−7)^9 }{(−7)^6}\)
- \(\dfrac{(x \sqrt{5})^8 }{x\sqrt{ 5}}\)
- \(\dfrac{(xy)^{18} }{(xy)^{17}}\)
Solution
Expression | Règle du quotient | Base |
\(\dfrac{k^3 }{k^2}\) | \(k^{3−2 }= k\) | \(k\) |
\(\dfrac{r^{32} }{r^{21}}\) | \(r^{32−21 }= r^{11}\) | \(r\) |
\(\dfrac{\sqrt{2}^ 7 }{\sqrt{2 }^4}\) | \(\sqrt{2 }^{7−4 }= \sqrt{2 }^3\) | \(\sqrt{2}\) |
\(\dfrac{(−7)^9 }{(−7)^6}\) | \((−7)^{9−6 }= (−7)^3\) | \(-7\) |
\(\dfrac{(x \sqrt{5})^8 }{x\sqrt{ 5}}\) | \((x \sqrt{5})^{8−1 }= (x \sqrt{5})^7\) | \(x\sqrt{5}\) |
\(\dfrac{(xy)^{18} }{(xy)^{17}}\) | \((xy)^{18−17 }= xy\) | \(xy\) |
Remarque : Dans cette section, l'exposant du numérateur était supérieur à l'exposant du dénominateur. Ce ne sera pas toujours le cas. Le cas où l'exposant du dénominateur est supérieur à l'exposant du numérateur sera discuté dans une section ultérieure.
Utilisez la règle du quotient des exposants pour simplifier l'expression donnée.
- \(\dfrac{−y ^{13} }{−y^7}\)
- \(\dfrac{(2x)^{25}}{ 2x}\)
- \(\dfrac{\sqrt{7 }^{17 }}{\sqrt{7 }^{12}}\)
- \(\dfrac{(−7)^9 }{(−7)^6}\)
- \(\dfrac{(x + y) ^{78}}{ (x + y)^{43}}\)
- \(\dfrac{\sqrt{xy }^{15 }}{\sqrt{xy }^{11}}\)