Skip to main content
Global

4.3 : Évaluation d'une fonction

  • Page ID
    165709
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Lorsqu'une fonction est évaluée, remplacez x par une valeur numérique donnée ou une expression algébrique, puis simplifiez le résultat.

    Étant donné\(f(x) = −x^2 + 5x + 12\), trouvez chacun des éléments suivants :

    1. \(f(2)\)
    2. \(f(−5)\)
    3. \(f(t)\)
    4. \(f(4x − 1)\)
    Solution
    1. Remplacer\(x\) par\(2\) :

    \(\begin{aligned} f(x)& = −x^ 2 + 5x + 12 && \text{Given equation} \\f(2) &= −(2^2 ) + 5 ∗ 2 + 12 && \text{Replace x with 2 - notice that only 2 is squared, not the minus sign} \\ f(2) &= −4 + 10 + 12 &&\text{Simplify} \\ f(2)& = 18 &&\text{Solution}\end{aligned}\)

    1. Remplacer\(x\) par\(-5\) :

    \(\begin{aligned} f(x) &= −x ^2 + 5x + 12 &&\text{Given equation } \\ f(−5) &= −((−5)^2 ) + 5 ∗ (−5) + 12 &&\text{Replace x with −5 - notice that it’s }−x ^2 \text{ , so the −5 is squared, but the result is still negative} \\ f(2) &= −25 + (−25) + 12 && \text{Simplify } \\ f(2) &= −38 &&\text{Solution} \end{aligned}\)

    1. Remplacer\(x\) par\(t\) :

    \(\begin{aligned} f(x) &= −x^2 + 5x + 12 &&\text{Given equation } \\ f(t)& = −t ^2 + 5 ∗ (t) + 12 && \text{Replace x with t } \\ f(t) &= −t 2 + 5t + 12&& \text{Simplify } \end{aligned}\)

    1. Remplacer\(x\) par\((4x-1)\) :

    \(\begin{aligned} f(x) &= −x^2 + 5x + 12&& \text{Given equation} \\ f(4x − 1) &= −(4x − 1)^2 + 5 ∗ (4x − 1) + 12 &&\text{Replace x with }(4x - 1) \\ f(4x − 1) &= −(16x ^2 − 8x + 1) + 20x − 5 + 12 &&\text{Expand} (4x − 1)^2 \text{ and distribute the }5 \text{ to } (4x - 1) \\ f(4x − 1) &= −16x^ 2 + 8x − 1 + 20x − 5 + 12 && \text{Distribute the negative sign}\\ f(4x − 1) &= 16x ^2 + 28x + 6 && \text{Simplify} \end{aligned}\)

    1. Pour la fonction\(f(x) = x^3 − 9\), trouvez
      1. \(f(3)\)
      2. \(f(2x-5)\)
      3. \(f(t)\)
    2. Pour la fonction\(f(x) = x^2 − 4x + 1\), trouvez
      1. \(f(2)\)
      2. \(f(4x+3)\)
      3. \(f(z)\)
    3. Pour la fonction\(f(x) = x^4 + 9x^2 − 6x − 1\), trouvez
      1. \(f(1)\)
      2. \(f(x+2)\)
      3. \(f(a)\)